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Abstract

Through the development and usage of an agent-based model, this paper investigates firms’
adaptive strategies against disruptions in a supply chain network. Viewing supply chain networks
as complex adaptive systems (CAS), we first construct and analyze a real-world supply chain
network among 2,971 firms spanning 90 industry sectors. We then develop an agent-based
simulation to show how the model of firms’ adaptive behaviors can leverage competition
relationships within a supply chain network. The simulation also models how disruptions
propagate in the supply chain network through cascading failures. With the simulation, we seek to
understand if firms’ adaptive behaviors can reduce the impact of disruptions in these networks.
Therefore, we propose, evaluate, and analyze two types of adaptive strategies a firm can leverage
to reduce the negative effects of supply chain network disruptions. First, we deploy in our model
a reactive strategy, which restructures the network in response to a disruption event among first-
tier suppliers. Next, we develop and propose proactive strategies which are used when a distant
disruption is observed but has not yet hit the focal firm. We discuss the implications related to how
and when firms can improve their resilience against supply disruptions by leveraging adaptive
strategies.
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1. Introduction

Due to the complexity, uncertainty and interdependence of today’s supply chains, there is
an increased risk of loss in the supply chain network due to a disruption event (Bode et al., 2011;
Bode and Wagner, 2015; Kamalahmadi and Parast, 2016). A disruption in a supply chain network
is defined as an event that disrupts the flow of goods or services (Craighead et al., 2007). Losses
stemming from supply chain network disruptions may manifest as financial loss, a loss in
operational performance and even a loss of market position (Hendrick and Singhal 2003;
Hendricks and Singhal, 2005; Wagner and Bode, 2008). Moreover, because of the interconnected
nature of supply chain networks, a disruption may propagate and cascade through the supply chain
(Hearnshaw et al., 2013; Fiksel et al., 2015) with increasing magnitude or severity of impact (Van
der Vegt et al., 2015). In other words, a disruption may not originate from the focal firm’s
immediate suppliers but rather elsewhere in the network (Blackhurst et al., 2005; Kim et al., 2015).
A lack of understanding of how the supply chain network is structured may exacerbate the impact
of disruptions and inadvertently allow disruptions to propagate (Kim et al., 2015). Managers of
real-world supply chains find the cascading effect or propagation of a disruption difficult to
understand (Fiksel et al., 2015). The ability to restructure the supply chain in the face of changing
conditions is critical to maintain continuity of supply chain performance (Hearnshaw, et al. 2013).
Flows of materials within the supply chain network need to be redirected and structures need to be
adapted to allow for continuity in operations. As such, there have been calls to examine the
structure of supply chain networks and determine the ability of the network to adapt in the face of
supply chain disruptions (Hearnshaw et al., 2013; Kim et al., 2015; Van der Vegt et al., 2015).

In this study, we view a supply chain network as a complex adaptive system (CAS) (Choi

et al., 2001) where, in the face of a disruption, firms connected in a complex network have the



ability to adapt and restructure their connections. The CAS framework provides a useful theoretical
foundation for this study (Thomson, 1967; Anderson, 1999; Choi et al., 2001) as firms in a supply
chain operate as an interconnected network in a dynamic environment (Blackhurst et al., 2011;
Bode et al., 2011; Kim et al., 2011). Therefore, even a small change at one node in the chain can
cause a disruption to spread, impacting other nodes in the chain (Craighead et al., 2007). We posit
that firms in a supply chain constitute self-organizing networks. In addition, some supply chains
can be adaptive or resilient. When hit with a disruption, they can adapt or restructure themselves
to reach a desirable state (back to the original state, an equivalent state, or better) (Ambulkar et al.,
2015). In viewing supply chain networks as adaptive systems, the ability to adapt and restructure
is critical for minimizing losses from disruptions (Hearnshaw et al, 2013; Ambulkar et al., 2015).
The effectiveness of adaptive restructuring strategies in improving network resilience after node
removal has been illustrated in other complex systems, such as food webs (Staniczenko et al.
2010). In addition, Nair and Vidal (2011) noted that network topology is an important factor with
regards to spreading disruptions. However, recent research on resilience to supply chain
disruptions has not fully incorporated the role of network structures (Kim et al., 2011) and lacks a
clear understanding of disruptions and their impact at a network level (Kim et al., 2015). In other
words, understanding how disruptions impact multiple tiers in a supply chain and how the structure
of the network may play a role in this impact is lacking. In order to address these gaps in the
research, we seek to answer the following research question:

How can firms leverage different types of adaptive strategies in the supply network to
improve resilience against supply disruptions?

Inspired by both supply chain management and network science literatures on rewiring
edges (Watts and Strogatz, 1998; Zhao et al., 2011b), our study presents and examines two types

of adaptive strategies to restructure a supply chain network: 1) a reactive strategy, which



restructures the network in response to a disruption event among first-tier suppliers. In other words,
reactive strategies are used when an immediate supplier of a focal firm fails. Next, we develop and
propose 2) proactive strategies. These strategies focus on restructuring the network after observing
a distant firm failure (beyond first tier) in order to avoid possible disruptions to the focal firm.
Representing a forward-looking approach, proactive strategies are in anticipation of a disruption
(which has already occurred in another part of the network) hitting the focal firm and will identify
the weakest spot specific to the disrupted distant firm in the network.

In order to study firms’ adaptive strategies that improve their resilience to supply chain
disruptions, this study develops agent-based simulations based on large-scale real-world supply
networks. Our modeling of adaptive behaviors incorporates the structure of both supply chain
networks (which connects partner firms in the supply chain,) and competition networks (which
connect competing firms in the supply chain) so that we can investigate how competition
relationships among firms in a supply chain network can be exploited to develop resilience against
disruptions (in Sections 4 and 5.1). The two networks are again used to model and analyze firms’
proactive strategies (in Section 5.2) including factors related to the effectiveness of proactive
strategies (in Section 5.3).

This research proceeds in four steps: First, we collect data of 2,971 firms from 90 industries
to construct a large-scale supply chain network among these firms, along with an accompanying
competition network. The data was collected through scraping a database for information on firms
including their financial data as well as relationship data among firms. We reveal the complex
structural properties of these networks and show a firm’s partnership and competition with others
are interweaved. Second, we design agent-based simulation models for firms’ reactive strategies

in this complex system, and the propagation of disruption impact. Third, we use the models to



evaluate the impact of disruptions and illustrate the effectiveness of reactive behaviors in reducing
the impact of disruptions. Fourth, we propose, evaluate and analyze proactive strategies that firms
can use to improve their supply chain resilience against distant disruptions.

This study makes a number of important contributions to the understanding of supply chain
networks. First, our agent-based model leverages structures of both real-world supply chain and
competition networks as well as firm attributes, to realistically model key components of
complexity in supply chain networks, namely the propagation of a disruption in the supply chain
and firms’ adaptive behaviors to manage disruption risk. The use of competition networks opens
interesting possibilities to not only handle disruptions more effectively, but also to gain advantage
in the market by leveraging visibility of relationships and structures within the network. Second,
we illustrate how the insights gained in this study can be used by a focal firm to restructure its
supply chain network so that it becomes more resilient against supply chain network disruptions
in a real-world setting. By using both the supply chain and competition networks, this research
helps to better understand the effectiveness of adaptive strategies within complex supply chain
networks in the face of supply chain disruptions.

The remainder of this paper is organized as follows. After covering the theoretical
foundation and related studies for this research in Section 2, we introduce how we collect empirical
data to construct and analyze large-scale supply chain and competition networks in Section 3.
Section 4 describes the agent-based model we develop for this research, and Section 5 shows
results from our simulations and related experiments. The paper concludes with a discussion of

the results, future work and limitations in Section 6.



2. Literature

This section covers the literature related to supply chain networks as complex adaptive
systems as well as disruptions in the supply chain network.
2.1 Supply Chain Networks as Complex Adaptive Systems

Based on the seminal work of Choi et al. (2001), a CAS is defined as an “interconnected
network of multiple entities (or agents) that exhibit adaptive action in response to both the
environment and the system of entities itself” (Pathak et al., 2007, pg. 550). A CAS is a self-
organizing system and it reconfigures its internal and external linkages to continually evolve over
time (Anderson, 1999; Choi et al., 2001). Kim et al. (2015) and Nair et al. (2009) note that CAS is
a useful theory in describing supply chain network structures. Pathak et al. (2007) term supply
networks as a typical case of CAS because a supply chain will adapt via interactions of nodes
within the network and evolve over time. In applying CAS to supply chain networks, Pathak (2007,
pg. 562) states that such a network consists of “interconnected autonomous entities that make
choices to survive and, as a collective, the system evolves and self-organizes over time”. This is
particularly applicable in looking at disruption propagation in supply chains. In a supply chain
network, a disruption such as a supplier failing will cause the agent (focal firm) to seek an
alternative supplier (using schema defined as a plan or decision-making logic) leading to a change
in the network structure. Interestingly, Choi et al. (2001) note that supply networks are complex
and dynamic, and changes that occur within the network (such as at a second or third tier supplier)
are often outside of a focal firm’s awareness. In a supply chain network disruption context, this
means that a disruption can occur without the focal firm knowing that it will be affected. However,
because of the interconnected nature of the network, a disruption may propagate and worsen and

eventually have a severe impact to the focal firm (Hearnshaw et al., 2013; Fiksel et al., 2015). In



this paper, a CAS lens allows us to view a supply network as a complex system where individual
firms can adapt and restructure their networks in the face of a supply chain disruption.
2.2 Disruptions to Supply Chain Networks

While researchers have studied the resilience of supply chain networks from a complex
network perspective (Thadakamalla et al. 2004; Zhao et al. 2011b; Kim et al., 2015; Zhao et al.,
forthcoming), structures of large-scale supply chain networks have often been synthetically created
based on the assumption that supply chain networks follow certain network topologies, such as ER
random, small-world, or scale-free networks (Pathak et al., 2007). While these topologies have
been observed in various complex social and physical networks, their applicability for supply chain
networks are not clear in the literature. For example, empirical studies on supply chain network
structures have found that some supply chain networks have truncated power-law degree
distributions (Saavedra et al., 2008), while some do not (Atalay et al., 2009; Kito et al., 2014).
Another disadvantage of using synthetically created supply chain networks is that the connection
between firm/node attributes (such as industry and size) and their network positions is often
ignored, even though both firm attributes and network positions are important when measuring
resilience against disruptions. For example, a large retailer (e.g., Walmart) may have a great
number of suppliers but few customer firms in the supply chain network, while a semiconductor
firm with a medium size (e.g., ARM Holdings PLC) can have the opposite network position: many
customers and few suppliers.

There have been studies based on real-world supply chain networks, but they are often
limited to networks for a specific product, such as automobiles (Kim et al., 2011). Although such
an approach can help to understand a focal firm’s operation at a very fine-grained level (e.g.,

different parts for a product), it can be challenging to obtain such detailed information of product-



level flows among firms and how each firm uses parts it procures from suppliers to produce its
own products, especially when the network goes beyond a couple of hundred nodes.

A recent study (Brintrup et al., 2016) made a notable effort to address this problem by
integrating product flows among more than 18,000 inter-connected firms in the automobile
industry and studied disruptions to this network from a topological perspective. However, at such
a large scale, product information is only available at the level of generic product categories (e.g.,
air conditioner and gearbox) rather than for specific product models, and relationships among
different products (e.g., what parts are needed to produce an air conditioner) are very difficult to
capture. Another limitation of these product-specific supply networks is that ties among firms
mainly reflect how parts or materials related to the product would flow from various suppliers to
the focal firm. Other connections among the focal firm’s suppliers are often missing or incomplete
if they are not directly related to the product. For possible disruptions to a specific product (e.g.,
automobiles), such networks are sufficient and provide accurate information on the flow of related
goods. However, firms often feature different lines or types of products for different types of
customers (e.g., Samsung Electronics manufactures smartphones, TVs, and home appliances for
consumers, along with semiconductors, LED panels, and network infrastructures for other firms).
Thus, studying disruptions at the firm level requires the collection and aggregation of such product-
specific supply networks for different products a firm provides, which is a daunting task.

Meanwhile, while some have examined the resilience of large-scale real-world supply
chain networks, studies focused on the propagation of disruptions and the effect of adaptive
behaviors during propagation are lacking in the literature. For example, Brintrup et al. (2011) focus
on the resilience of Toyota’s supply chain network from a topological perspective. Saavedra et al.

(2008) analyze how a supply-chain network in the garment industry shrank over years. They



propose a preferential-attachment model for how a node replaces a lost partner with a new one that
is already well connected in the network. However, these studies do not incorporate the cascading
failures of nodes nor the effects of firms’ adaptive strategies. Therefore, this study seeks to
understand how firms can restructure supply chain networks to improve their resilience against
cascading disruptions.
3. Network Construction and Analyses

In this section, we will describe how we collect data, construct the supply and competition
networks, and illustrate characteristics of the two networks.
3.1 Data Collection and Network Construction

Our supply chain network is created from a secondary data source using Mergent Horizon

(http://www.mergenthorizon.com). Mergent Horizon lists information about global firms

including company reports, financial data, competitors, customers and suppliers. We scrape the
database using a snow-ball sampling approach, a technique for collecting large-scale network data
(Carrington et al. 2005), with the Boeing Company as the seed node or anchor for the entire
network in order to give perspective to the network. Raw HTML files from each firm’s web page
in the database are collected by our scrapers (a computer program that retrieves and parse files
from the Web), and parsed to retrieve not only its attributes, but also its suppliers, customers, and
competitors, for subsequent scraping. Firms in our final dataset include Boeing’s tier-1 suppliers,
tier-2! suppliers, and tier-3 suppliers, as well as Boeing’s customers, and customers of Boeing’s

tier-1 and tier-2 suppliers. In addition to firms, the final dataset also includes supplier-customer

! Note that when going beyond first tier suppliers, we cannot guarantee a supplier of a firm’s tier-1
suppliers is a tier-2 supplier of the firm. This is because we do not have data on exact product flows
among firms and how a firm uses its incoming materials to generate outgoing products. However, for the
purpose of simplicity and naming convention, we still call these firms as tier-2 suppliers of the focal firm.
Similar naming schemes apply to tier-3 and tier-4 suppliers.

9


http://www.mergenthorizon.com/

relationship among all the firms in the dataset. The unshaded portion of Figure 1 shows the
coverage of firms in our dataset, where the direction of arrows corresponds to the direction of data
collection. Also, even though our data collection starts with Boeing, the network is not centered
on Boeing, because for each firm, we also capture its relationships with all other firms that appear
in the dataset.

Our data collection (see Figure 1) yields 2,971 firms that are headquartered in 63 countries
from North America, Europe, Asia, Latin America and Africa. As earlier mentioned, firms in our
dataset span beyond the Aerospace industry, and cover 90 different sectors, with Internet &
Software (8.65%), Semiconductors (5.39%), and Industrial Machinery & Equipment (4.54%)
being the top 3 most-represented sectors. Such a rich dataset enables us to build a large-scale global
supply chain network that spans multiple industries?.

In addition to building a supply chain network based on relationships of a firm’s suppliers
and customers, our collection of competitor data for these 2,971 firms, along with the product
overlap between two competitors (provided by Mergent), makes it possible to construct a
competition network among these 2,971 firms. Competitors beyond these 2,971 firms are not
included in the competition network. The supply and the competition networks among the same
set of firms are essentially a multi-relational network among these firms (Yan et al, 2012: Zhao et
al., 2016), but we treat them as two networks to simplify implementations.

Constructions of the two networks are shown side by side in Figure 1 with the shaded

portion being the competition network. The original supply chain network is denoted by G4(V,Es)

and the competition network by Gp(V,Ep). The two networks share the same set of nodes V, with

2 To show the dataset we collected with Boeing as the seed firm is a representative sample, we also
retrieve another set of data, and find that the new data and the network based on it feature similar
characteristics with the ones used in this paper. More details are in Appendix 1.
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|V]=2,971. Each node v; € V corresponds to a firm. However, the edge sets are different for the two
networks. e;; € E in the supply chain network represents a directed and unweighted supply edge
from v; to v;, which means v; is a supplier of v;. By contrast, e;; € Ep in the competition network
is a directed and weighted edge between v; and v;, indicating that v; is a competitor of v;. The
weight of e;; is proportional to the product overlap between v; and v;. Take three firms, Boeing
(ID 1048), Curtiss-Wright (ID 287) and Airbus Group (ID 103714), as an example. Curtiss-Wright
is a supplier of Boeing and e;g7 1048 € Es 1s an edge in the supply chain network. Airbus Group is
a competitor of Boeing. Among Boeing’s areas of business, 10 out of 17 are also within Airbus

Group’s areas of business. Thus, there is an edge e1g4g 103714 € Ep in the competition network

with weight 10/17=0.59.
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Figure 1. Data collection flow for our supply chain network and competition network.
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3.2 Topological Analyses

Figure 2 visualizes the supply chain network. Table 1 provides a summary of the basic
statistics of the supply and competition networks including number of nodes, number of edges,
characteristic path length (the average shortest path length between a pair of nodes), diameters (the
maximum of shortest path length between any two nodes), and clustering coefficients (the
probability that a node’s two neighbors are connected to each other). For example, the average
distance between two nodes in the supply network is only 4.7 hops, and any two nodes are no more
than 13 hops away from each other. These characteristics are similar to many real-world complex
networks (Newman, 2003).

Both the supply and the competition networks feature complex topologies with highly-
skewed degree distributions (Barabasi and Albert, 1999; Albert and Barabasi, 2002). In Table 2,
we compare four common degree distributions for complex networks—Power-law (PL),
Exponential (EXP), Truncated Power-law (Truncated PL), and Log-Normal (LN). We find that
Truncated PL offers the best fit for the supply network’s degree distribution. As for the competition
network, Truncated PL still fits its degree distribution better than the other three, although
differences are not statistically significant when comparing Truncated PL with LN and PL. Figure
3 shows both networks’ degree distributions with fitted Truncated PLs estimated using the
approach by (Clauset et al., 2009). In other words, most nodes in the network have few neighbors,
while there are few nodes with many neighbors. According to previous studies (Thadakamalla et
al. 2004; Zhao et al. 2011a), such a supply network with highly skewed degree distributions is
usually robust against random failures but is more fragile when important nodes with high degrees

are removed. We will evaluate this later in our simulation analysis.
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Figure 2. Visualization of the supply chain network. The size of a node is proportional
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Table 1. Basic network statistics

#of #of | characteristic diameter clustering
nodes | edges path length coefficient
Supply Network 2,971 9,535 4.704 13 0.179
Competition Network | 2,971 6,372 5.229 13 0.401
Table 2. Degree distributions of the two networks.
Supply Network Competition Network
Truncated PL vs. PL 5.461*** 0.406
Truncated PL vs. EXP 10.001*** 2.460**
Truncated PL vs. LN 2.452% 0.745
LN vs. EXP 9.795%** 2.458*
LN vs. PL 4.745%** 0.216

*:p < 0.05; **:p <0.01; **xx:p <0.001
Note: The table shows log-likelihood ratios for pairwise comparisons between candidate
distributions. If the value is positive, the first distribution is better. Otherwise, the
second one fits the data better. For example, 6.168 indicates that, for the supply
network, Truncated Power-law fits the degree distribution better than Power-law.
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Figure 3. Log scale degree distributions of the supply network (left), and the competition
network (right). The mathematical equations are fitted Truncated Power-law for each
degree distribution.
In addition, we also find a surprising relationship between the supply chain and competition
networks. As shown in Figure 4, it is possible that a firm’s competitor is also among the same

firm’s upstream suppliers. For example, there is a probability of 7% that a competitor of a focal

firm also serves as the focal firm’s upstream supplier that is 3 hops away in the supply chain
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network. Such a probability is as high as 20% for a competitor to be an upstream supplier that is 4
or more hops away.

All these findings further highlight the complexity embedded in supply chain networks:
two randomly chosen firms are, on average, within only 5 hops away from each other in the supply
chain network, and a firm’s competitor can also serve as an upstream supplier. They also illustrate
the necessity to build a large-scale firm-level supply chain network using real-world data, because

synthesized networks or product-specific networks can hardly reveal such structural complexity.
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0.5

o
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Figure 4. Probability of a firm's competitor is among its upstream firm at different
distance.

4. The Agent-based Model
Agent-based modelling (ABM) is a powerful tool for the study of CAS (Axelrod 1997;

Wilensky and Rand, 2015; He et al., 2016). ABM can capture phenomena in CAS by simulating
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how each individual (i.e., agent) makes decisions based on its interactions with the environment
and other agents (Wu et al., 2013). Agents can also adapt and evolve (He et al., 2015). Pathak et
al. (2007) and Nair and Vidal (2011) discuss how interconnected entities may adapt in response to
a change in the system. This adaptation could lead to a restructuring of the network. Following
this logic, we develop an agent-based model to study a supply chain network as a CAS.
Specifically, the model simulates how firms respond to disruptions via reactive behaviors and how
the impact of disruptions propagates in large-scale supply chain networks. In our ABM, each
firm/node is represented as an autonomous agent. In reality, a firm whose supplier ceases to operate
may not simply wait for the supplier to recover. Instead, the firm will try to find alternative sources
of supplies and could request new connections with one of these alternative suppliers in order to
resume its own normal operations. When receiving such requests to build new connections, these
alternative suppliers will also decide whether to accept such requests.

Therefore, the first key component of our ABM is to model firms’ adaptive behaviors when
facing disruptions in the supply chain network G,(V, E) by leveraging the competition network G,
(V, E,) among firms, where V is the set of all firms, and E and E,, are sets of edges in the two
networks respectively. In other words, this adaptive strategy of network restructuring is reactive,
as it occurs in response to a first-tier supplier failure. To implement this strategy, each run of our
ABM consists of multiple iterations of inter-agent interactions, and each iteration has two steps:
Step 1 and Step 2. Assume an initial disruption occurs at agent v; and forces it to cease operations
(i.e., removing v; from V, and its edges from E and E) at time ¢. After that initial disruption, time
ticks t+odd_number (e.g., t+1, t+3, t+5,...) in our model are for customers of v; to find and send

requests to alternative suppliers (described in Step 1.1 and Step 1.2), and time ticks t+even _number
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(e.g., t+2, t+4, t+6...) are for alternative suppliers to decide which requests to accept (described
in Step 2).

Another key component of our ABM is to model how the impact of a disruption propagates
in a supply chain network. Our modeling of such propagations was based on agents’ reactive
behaviors in seeking alternative suppliers. If an agent, who needs to find an alternative supplier
due to the failure of one of its original suppliers, cannot secure one such supplier, then the agent’s
operation will be disrupted, and may even cease all of its operations with certain probabilities. If
the agent does stop operating due to the lack of alternative suppliers, then it will be removed from
the supply chain network and as a result, all its customers will need to seek alternative suppliers
(described in Step 1.3). Such consecutive removal of nodes from the supply chain network after
the initial node removal will constitute cascading failures, and model the propagation of
disruptions across the whole supply chain network.

The complete model is specified as follows (Appendix 2 lists pseudo-code of the model).
After the initial node removal (Step 0), the model includes two major components: firms seeking
alternative suppliers and send requests (Step 1), and alternative suppliers deciding which requests
to accept (Step 2).

Step 0: The Initial Node Removal. At the very beginning, the model will remove one firm from
the supply chain network. Edges attached to the node are also removed. Users of our model
can decide which node is removed initially. Such a single node removal at the beginning may
cause cascading failures of other nodes later.

Step 1: Seeking Alternative Suppliers. After the removal of a node v; from G (it could be the

initially removed node, or a node removed by cascading failures), each customer of v; (denoted

as vy, € C;, where Je;,, € E ) will try to find alternative suppliers in the following way:
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Step 1.1. Identify potential alternative suppliers. v, considers all direct competitors of v;

from G, (denoted as v, € P;, where Je;, € Ep) as its list of candidates. Each agent v, in

ke * in
the candidate list of v,,;, will be approached by v,, with probability p,, ,, = “7‘:/‘”_, where

Wi 18 the edge weight between v; and v;,, in the competition network G,,. Recall that edge
weight between two firms in the competition network represents the two firms’ overlap in
products. The definition of p,, ,,, reflects the intuition that a competitor that is more similar
to v; in terms of products is more likely to provide what v; supplies to its customers

previously. k is a weighting factor to give higher preference to existing partners (customers
or suppliers). The preference for and benefits of using existing suppliers is well
documented in the literature, including potential liabilities and risk exposure in using new
and unproven partners where capabilities and trust have not been established (Dyer and
Singh, 1998; Wagner and Friedl, 2007), “switching inertia” in using new suppliers (Li et
al., 2006), and the ability to leverage specific assets of the relationship (Dwyer et al., 1987,
Azadegan et al. 2011). In fact, some literature has noted the “liability of newness” can
make ventures susceptible to risk events (Azadegan et al., 2013).

In our model, if 3e,, , € Es or e, ,, € Es, we try two different ways to sample the
value of k: (1) k~N(1.5,0.1), a normal distribution with a mean of 1.5 and a standard
deviation of 0.1 with a minimum of 1; (2) k~N(1.5, 0.2), a normal distribution with a
mean of 1.5 and a standard deviation of 0.2 with a minimum of 1. Otherwise, & is set to 1
for non-partners.

Step 1.2. Stop approaching alternative suppliers. If an alternative supplier approached by

v, does not accept its request, then v,, will remove that supplier from its candidate list and
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decide which one to approach in subsequent trials by recalculating p;, ,, for each remaining
candidate. v,, will approach one alternative supplier at each time tick for Step 1 (¢+1, t+3,
t+5, ....) and will stop approaching alternative suppliers when any one of the three
following conditions is met:

(1) A request for an alternative supplier is accepted.

(2) It has reached the maximum number of trials allowed for an agent but has not

secured an alternative supplier. The maximum number of trials is set to 10 (i.e., one

iteration of a simulation will stop after +20)>.

(3) v, already exhausts all of its alternative supplier candidates (e.g., v; only has 5

competitors) before reaching its maximum number of trials.

If the 2" or the 3" condition is met, that means v,, cannot secure an accepted
request from an alternative supplier by the end of the iteration, and v, will be marked as
“disrupted”.

Step 1.3. Possible cascading failures. To simulate cascading failures, we remove a
“disrupted” agent v; from the network with mean probability of PX, which depends on two
factors about v;.

First, PR is proportional to the percentage of lost suppliers. A lost supplier for v;

refers to a supplier that meets both of the following conditions: (1) it has ceased operation

and been removed from the supply chain network; and (2) v; cannot find an alternative

3 The degree distribution of the competition network is highly skewed. Only 10% of the firms in the
network have more than 10 competitors. In other words, it is unlikely for a firm to have more than 10
alternative suppliers. Meanwhile, simulation data also shows that the conditional probability that a firm’s
seeking of alternative suppliers was stopped because of the threshold of 10 trials given that the firm needs
an alternative supplier is below 0.03%. Thus, we believe that increasing this threshold will have minimal
impact on simulation results.
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supplier to replace the removed suppliers after going through Step 1.1 and Step 1.2. The
percentage of lost suppliers refers to the ratio between a firm’s number of lost suppliers
and the firm’s number of original suppliers prior to disruptions. For example, a firm that
has 10 original suppliers but loses 1 supplier will have 10% of lost suppliers. The idea
behind this factor is that the more suppliers a firm loses, the more likely this firm will fail
to operate. For instance, all other things being equal, a firm that has lost 60% of its suppliers
is more likely to fail than another one that lost only 10% of its suppliers. This is supported
by supply chain risk research such as Trkman and McCormack (2009) who note that
supplier failure is a key driver of risk in the supply chain where the loss of a supplier
increases the riskiness to the firm.

Second, PR is inversely proportional to the firm size of v;. In addition to the status
of a node’s neighbors, as in the first condition, the size of a company also matters in
cascading failures — other things being equal, larger firms are less likely to cease operations
while smaller firms are more likely to fail due to limited resources and relationships
(Azadegan et al., 2013).

Specifically, PF, the mean probability that v; is removed, is a function of agent v;
’s size and percentage of lost suppliers. It is defined in Equation 1, where Z; = log(Revenu
e;) 1s the size of v;, and L, represent the percentage of lost suppliers for agent v;. According
to this formula, if all the suppliers of a firm are lost (L; = 1), then a firm will be removed
from the network with a mean probability of 1. As for firm sizes, the biggest firm serves
as the baseline and does not get any size-based discount on its ability to survive.
Meanwhile, the smallest firm would still have a non-zero probability to survive as long as

it does not lose all the suppliers. Given the same L;, the probability is linearly and inversely
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proportional to firm size Z;. This logic is supported in the literature, where the size of the
firm had been shown to be an advantage in managing risk and disruptions. For example,
Chopra and Sodhi (2014) state that large firms have the ability to build resilience relatively
inexpensively to better manage supply chain disruptions. Related to this in a supply chain
security context, Park et al. (2016, pg. 126) found that larger firms are better able to handle
security and safety issues due to “greater affordability for needed resource commitments”.
Finally, Azadegan et al. (2013) note that in comparison, larger and older firms are better at
managing risk and are less susceptible to damage from disruptions than newer and small

firms in a new venture context.

0, ifL;=0

PR = Z;—min (2) + 1 )
t Al x(1—1L;), Otherwise

(Equation 1)
1- max (Z) —min (Z) + 1

Because PR represents the mean probability that v; is removed, we also add some
variations to such a mean value. To ensure the robustness of our simulation results, we
tried to randomly sample the value of node removal from two distributions with PX as the
mean: the first one is a normal distribution N(PX, 0.1) with a standard deviation of 0.1; the
second one is a uniform distribution Unif(PX —0.1, PR +0.1). Both distributions are
truncated to make sure values sampled from them are in the range of [0,1].

Note that cascading failures may cause an agent to have more than one of its
original suppliers removed. In this case, the agent will need to identify an alternative
supplier for each of its original suppliers that are removed. Also, if a disrupted node is not
removed in one iteration, it may still be removed in a subsequent iteration with a mean

probability of PE, although its PX may increase if it continues to lose suppliers.
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Step 2: Decisions by Alternative Suppliers. After receiving new requests from v, to provide
supplies, alternative supplier v,, needs to decide whether to accept new requests, and if so, which
one(s) to accept. Note that there is an upper limit (Uy) on how many new requests each agent k

can accept. The limit is proportional to the agent’s firm size (represented by revenue) because we
assume that larger firms are often able to accommodate more requests as they have more resources
to review and accommodate requests.

Specifically, we evaluate two different ways to sample Uj. The first way is to divide all
firms in our study into three categories based on their revenues, and sample U from three different

normal distributions. Small firms are those whose revenues rank in the bottom 1/3 of all firms;
large firms have revenues that rank within the top 1/3 among all; and the rest are medium firms.

For small firms, Up~N(2, 0.5), where N(2, 0.5) represents a normal distribution with a mean of
2 and a standard deviation of 0.5; for medium firms Uy~N(4,1); for large firms Uy~N(6,2). The

actual values of U}, are rounded to the nearest integer with a minimum value of 0. The second way

Z; Zi . .
is to sample Uy, from one discrete uniform distribution Unif (5 —2,7 +2), where Z; is the integer

closest to Z; = log(Revenue;). Such a distribution ensures that the smallest company would still

have certain probabilities of offering extra capacities.

Once an agent has exhausted its capacity (i.e., reached its Uy), it will not accept any new

request. If an agent loses a customer, who is removed from the network due to disruptions, then

the agent can accommodate one more supply request beyond its original Uy. It is also worth noting
that this upper limit of accepting requests for each agent is set at the beginning of a simulation run.

In other words, for a given agent, its Uj will stay the same for one simulation run but may vary

from one run to another.

22



If at any given time ¢+¢’ (after the initial node removal at 7), v,, has not reached its upper
limit U,, it will accept new requests. If there is only one request to v, then v, accepts it. If there
is more than one request received by v, it creates a list of candidate requesters and decide which

one(s) to accept based on the following rules:

Step 2.1. Preference to requests from existing partners. Among agents on the list, v, will
first consider requests from those who are already connected with v,, (either as a supplier
or a customer). This assumption is similar to the one about picking alternative suppliers--
existing partners are more attractive than new partnership. If there are multiple such
requesters, then the probability for v, to pick an existing neighbor v,, would be
proportional to the product of the requester’s firm size (following logic from Azadegan et
al., 2013; Chopra and Sodhi, 2014; Park et al., 2016) and the similarity between v,, and the
supplier v,, is trying to replace.

Step 2.2. Preference to requests from larger firms. If v;, has not reached its upper limit

after accepting requests from existing network neighbors at #+¢’, it will try to accommodate

requests from non-network-neighbors. Similar to Step 2.1, if there are multiple such
requesters, then the probability for v, to pick a new customer v, would be proportional to
the product of v,,,’s firm size and the similarity between v,, and the supplier v,, is trying to

replace. If a request from a non-partner is accepted, a new edge will be added between v,

and v,, in the supply chain network.

After each iteration of a simulation run, our model checks if any agent(s) was removed
from the network due to cascading failures during the iteration. The model will repeat Steps 1 and
2 for customers of newly removed agent(s) in a new iteration of the same simulation (all candidate
lists and request lists will be cleared for the new iteration). When receiving a new request, those
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who have reached their upper limit U in previous iterations will no longer accept it, until a new
opening becomes available after one of their customers gets removed. A simulation will stop when
the simulation has finished its 13th iteration. 13 is the diameter of the supply chain network.
Therefore, 13 iterations should be long enough in most simulations to spread the effect of the initial
disruption to all nodes in the network®.

In all, we try two different settings for each of the three parameters in the model: the
preference to existing partners when approaching alternative suppliers, the probability to remove
a node from the supply network, and the extra capacity for a firm to accept new requests. That
leads to 2°=8 different settings for our simulation (listed in Table 3).

5. Results

The ABM is developed using Python and simulations are run on a high-performance
computing cluster with each of the 8 settings in Table 3 for the following analyses: (1) showing
the impact of disruptions with and without adopting reactive strategies, (2) evaluating the
effectiveness of proactive strategies for firms to improve their resilience against an ongoing distant
disruptions, and (3) analyzing factors related to the performance of proactive strategies. In each
simulation, we simulate the impact of one node removal (i.e., the initial disruption), although more
nodes may be removed due to cascading failures.

5.1. The impact of high and low-degree disruptions.
This set of experiments compares the effects of disruptions to high-degree and low-degree

firms by simulating the removal of high or low total degree nodes from the supply chain network.

4 Simulation results also show that most of the disruptions occur during the first four iterations.
After the 13™ iteration, the number of newly disrupted firms only increases by less than 2% for
high-degree initial disruptions. Thus we believe that extending the maximum value of iterations
beyond 13 will have minimal impact on the simulation results.
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Specifically, we rank each node based on their degrees in a descending order. Those ranked within
top 10% nodes are considered as high degree nodes (with degrees ranging from 15 to 312), whereas
the low-degree nodes are those with degree 1, 40% out of 2,971 firms in the network. For each
simulation setting in Table 3 and each type of node removal (i.e., high and low degree), repetitive
simulations are conducted 1,000 times. Overall, we run 8*2*1000=16,000 simulations for this
experiment.

Table 3. Different simulation settings.

Settin P;itfgzigzz :i tZﬁZﬁ?}i Extra capacity a firm can | The probability of
£ Is)uppliers accommodate removing a disrupted node.
Normal distribution R
! k-N(L.5, 0.1) based on firm size. N(P50.1)
Normal distribution DR R
2 k~N(1.5, 0.1) based on firm size. Unif(P; — 0.1, P} +0.1)
Zi _Z R
3 k~N(1.5, 0.1) Unif(i_ 2,54_ 2) N(P{,0.1)
Zi  _Z DR R
4 k~N(1.5,0.1) Unif(? - 2’7 +2) Unif (P —0.1, P; +0.1)
Normal distribution R
5 k~N(1.5, 0.2) based on firm size. N(P},0.1)
Normal distribution DR R
6 k~N(1.5, 0.2) based on firm size. Unif(P; — 0.1, P} +0.1)
Zi _Z R
7 k~N(1.5, 0.2) Unif(? — 2,5 +2) N(P{,0.1)
Zi  _Z DR R
8 k~N(1.5,0.2) Unif(? - 2’7 +2) Unif(P; — 0.1, P +0.1)

As mentioned earlier, after an initial node removal, other nodes can be in one of the
following states at a given time: undisrupted, disrupted, and removed. Undisrupted nodes operate
as usual, although they may have to request alternative suppliers or accept new customers.
Undisrupted nodes become disrupted when they fail to secure alternative suppliers to replace

original suppliers that are removed from the network. A disrupted firm can be removed from the
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network with a probability that takes into consideration both the size of the firm and the percentage
of lost suppliers (as described in Step 1.3 and Equation 1). We measure the impact of an initial
disruption by the total number of disrupted firms, because the operations of these firms are
negatively affected by the disruption. While the number of removed firms can also indicate the
severity of a disruption, the removal of a firm indicates the cease of operation for the whole
company, which is rare in reality.

Figure 5 (top) shows that an initial node removal can indeed disrupt multiple other firms.
As we would expect, high-degree node removal in such a network with highly skewed degree
distributions cause more firms to be disrupted and are more damaging to the whole network than
low-degree node removals. Simulation results are consistent no matter which simulation setting is
used: Pearson correlation coefficients among the average numbers of disrupted firms from
simulations with the 8 different settings for simulations range from 0.86 to 1.00 (all with p-
value<0.001).

As a comparison, we also showed results from another set of 16,000 simulations, which
have the same settings, except that agents in this new set of simulations will not adapt to a
disruption by reactively connecting to alternative suppliers (results in Figure 5 bottom).
Specifically, the new sets of simulations ignore Step 1.1, Step 1.2 and Step 2 in our original ABM,
and only keep the consecutive removal of nodes to model cascading failures. Comparing
simulation results where agents have reactive behaviors versus not, we can see that ignoring
agent’s adaptive behaviors from the model greatly increases the impact of the initial disruption.
With a reactive strategy, the maximum numbers of disrupted firms are lower than 30, whereas the
minimum numbers of disrupted firms after an initial high-degree node removal are higher than

1,400 without a reactive strategy. In other words, the inclusion of an agent’s reactive strategy in
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face of disruptions into our ABM plays an important role in reducing the negative impact of supply
chain disruptions. Without considering such adaptive behaviors, many previous studies of complex

network resilience may have over-estimated the negative impact of a disruption.

Simulations with agents’ reactive behaviors
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Figure 5. Total numbers of disrupted firms in the supply chain. Results for high and low
degree node removal with 8 different simulation settings.
5.2. Proactive strategies after distant disruptions.

Although our ABM incorporates firms’ adaptive behaviors in seeking alternative suppliers
when their original suppliers fail, a reactive strategy only occurs when a firm is forced to deal with
the impact of a failed tier-1 supplier. In many cases, a firm may want to be more proactive in
preparing for the impact of a disruption at a distant firm in the supply network (i.e., at least two
hops away) and even before any of its immediate suppliers fails. Intuitively, more proactive

identifications of which supplier is the riskiest spot given a distant disruption allows a focal firm
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to prepare an alternative supplier to the riskiest spot. By doing so, the focal firm gains two
advantages: First, it faces less competition for alternative suppliers with other firms that only react
to the failure of a direct supplier. Second, because such proactive behavior occurs before the distant
disruption actually hits the focal firm, it has more time to streamline supplies from the alternative
supplier than when it only adopts the reactive strategy after a direct supplier has failed.

Therefore, we propose and compare two proactive strategies for a firm to reduce its supply
network risk after a distant disruption is observed. Using 181 firms from 4 sectors’ (referred to as
the focal firm vy), we simulate the removal of high-degree distant firms that are at least 2 hops
away from vyand compare the probabilities that they are disrupted with and without using
proactive strategies.

Based on which distant firm is removed, our proactive strategies identify the riskiest spot
among the focal firm’s suppliers corresponding to the distant removal. Then the proactive
strategies add a new supplier as a backup or alternative for the riskiest spot. The first proactive
strategy we propose (S1) identifies riskiest spots based on simulation results. Given a focal firm
vy, for each high-degree firms that are at least two hops away from the focal firm, we remove the
high-degree firm, and observe if the initial node removal will eventually disrupt vy in 100
simulations. If vf is disrupted, it must have one or more suppliers that are removed during the
propagation of the impact from the initial removal. With the simulation results, for each pair of

focal firm v and the removal of distant node v,, we can obtain a Disruption Causing Probability
(DCP) distribution over the suppliers of v¢: < pf1,0f,2,-DF,i Pf s, > » Where S is the set of

tier-1 suppliers for vy, and pf; represents the probability that the initial removal of distant node v,

3> The four sectors are Computer Hardware & Equipment, Aerospace, Beverage and Food, and Retail
(general retail and specialty retail). The four sectors are the most represented among top 27 firms in
Gartner’s supply chain performance ranking in 2015 (Gartner, 2015).
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will disrupt v by removing v; € S¢. Then naturally, supplier v, with p¥,, = argmax,, Sf(p},l,
Df,2- Df,s,) 18 the riskiest spot among suppliers of vy if v, is removed. When more than one

supplier has the same maximum DCP, strategy S1 randomly selects one of them as the riskiest
spot.

Proactive strategy S1 requires a large number of simulations to obtain DCP for each pair
of focal firm and distant node removal. Therefore, we also propose a heuristic proactive strategy
(S2) to help managers approximate the riskiest spots without running many simulations. S2 is
developed based on a heuristic measure called Disruption Risk Score (DRS), which considers firm
sizes and topologies of both the supply and competition networks. Specifically, once a distant node
v, is removed from the supply chain network, S2 will evaluate focal firm v/'s suppliers v; € S¢
based on their sizes, degrees in the competition network (i.e. the number of competitors), and
Node-to-Node (N2N) betweenness in the supply chain network. Built on the concept of network
betweenness, which measures the probability that a node appears on the shortest paths between all
possible pairs of nodes, N2N betweenness of a node is the probability for the node to appear on
shortest paths between two given nodes. Take Boeing as an example: the shortest path length from
firm A to Boeing is 4, and there are 5 such paths with this length. Among Boeing’s Tier-1 suppliers,
firm B is on 3 of the 5 shortest paths, and firm C is on 2. Then for Boeing and firm A, N2N
(A, Boeing, B) = 3/5 and N2N(A,Boeing, C) = 2/5.

Specifically, the DRS of a supplier v; € Sy to focal firm vy after the removal of distant
node v, 1s defined in Equation 2, where P; is the set of v;’s competitors in the competition network.
|P;| is v;’s degree centrality in the competition network; Z; is the firm size of v;; and N2N (v, vy,
v;) is the Node-to-Node betweenness of v; on paths from v, to vs. The logic of using the DRS

measure is that among a focal firm’s direct suppliers, those who have fewer competitors (i.e., lower
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degree in the competition network), smaller sizes, and higher probabilities to be on the shortest
path between the removed distant node to the focal firm (i.e., higher N2N betweenness in the

supply network) are riskier for the focal firm.

DRST, = “2h@ntrvr) (Equation 2)
fi= TIPIx Z, !

After the removal of distant node v,, proactive strategy S2 identifies a firm v,, € Sy as the
riskiest spot for focal firm vy when v, = argmaxy,e s, DRS%,;. Similar to S1, ties are broken

randomly. In other words, riskier firms have higher probabilities to cause an impact to the focal
firm, because (1) they have relatively fewer backup or replacement options, (2) they are more
susceptible to disruptions due to their smaller sizes, and (3) they are more likely to spread the
disruption to the focal firm.

After finding the riskiest spot v,,, both strategies randomly pick one of v,,’s competitors,
which is not a current Tier-1 supplier of the focal firm, v}, € P,, N S_f, and add a directed link from
v to the focal firm vy. If v, has no competitors (|P,,| = 0) or all of its competitors are already the
focal firm’s suppliers (P,, € Sf), we exclude v,, from the candidate list and move to the 2" riskiest
spot. For both strategies, we simply add one new supplier for the focal firm right after a distant
node removal is observed, assuming the new supplier will accept the request. We make such an
assumption for two reasons: First, doing so can simplify the evaluation of proactive strategies. By
contrast, allowing a new supplier to reject a proactive request will prolong the simulation and could
lead to no new tie formed during proactive restructuring, which makes our evaluation difficult.
Second, because such a connection is built by a focal firm proactively to avoid possible disruptions,
the focal firm’s urgency for supplies is lower than in reactive strategies. Therefore, compared to
handling urgent requests sent via reactive strategies, an alternative supplier has a higher probability
to adjust its capacities to accommodate such a proactive request.

30



To evaluate the two proactive strategies, we also add our original reactive strategy from
our ABM (described in Section 4) as a baseline adaptive approach for comparison where the focal
firm will passively wait till one of its tier-1 suppliers gets removed, and then try to find alternative
supplier(s). In the experiments, we only simulate the removal of high-degree nodes, whose degrees
rank within top 10% in the whole network, as removing these nodes is the most damaging. The
removal is also limited to distant nodes that are at least two hops away from a focal firm, because
proactive strategies take place when a focal firm’s tier-1 suppliers are not yet affected. After the
initial removal of high-degree distant node, we compare the probabilities that focal firms get
disrupted when no proactive strategy is used (baseline), proactive strategy S1 is used, and proactive
strategy S2 is used. We run 500 simulations for each pair of distant high-degree node removal and
focal firm.

Figure 6 uses a scatter plot to show the decrease in focal firms’ probabilities of being
disrupted after using the two proactive strategies S1 and S2. A positive decrease means a proactive
strategy helps to improve a focal firm’s resilience against high-degree distant node removals.
Compared to the baseline with only reactive behaviors, proactive strategies can reduce the
probabilities of disruptions for 150 (82.87%) of the 181 focal firms in our simulation. The
maximum decrease is 0.36 for Inventec Corp with S2.

Meanwhile, the performance of the two strategies is highly correlated (r=0.99, p-
value<0.0001), with S1 performing slightly better. For example, both strategies lead to similar
average disruption probabilities: 3.3% for both S1 and S2, whereas such probability is 7.8% on
average without proactive strategies. Besides 12 firms where both strategies have the same
performance, S1 outperforms S2 for 90 focal firms, while S2 performs better than S1 for 79 focal

firms. At the same time, the performance of S2 compared to S1 also illustrates the effectiveness
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of our heuristic measure DRS for riskiest spot identifications without running a large number of

simulations.

Decrease in disruption probabilities with proactive strategy S2
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Figure 6. Decrease in focal firms’ disruption probabilities for 181 focal firms with

proactive strategies S1 and S2.
5.3. Factors impacting the effectiveness of proactive strategies

As Figure 6 shows, the effectiveness of proactive strategies varies from one focal firm to

another. A better understanding of which factors make such strategies more or less effective can
help a firm better decide if it should adopt proactive strategies. Therefore, we hypothesize two
factors that can influence the effectiveness of proactive strategies for a focal firm and run OLS
regressions to evaluate the impact of these factors. Because the two proactive strategies have very
similar performance with S1 slightly outperforming S2, our analysis on the effectiveness of

proactive strategies focuses on S1.
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5.3.1. Unevenness of Risk among Suppliers in the Supply Chain Network

With proactive strategy S1, we can obtain the distribution of average risk from all suppliers
to a focal firm by averaging a focal firm’s DCP for each distant node removal. We hypothesize
that the more even the risk distribution is, the less effective a proactive strategy becomes. This is
because a more uneven risk distribution means some suppliers are much riskier than others for the
focal firm, which can then use proactive strategies to address such vulnerability. This indeed
reflects the reality of today’s supply chain networks where some suppliers are riskier partners or
more likely to cause a disruption. Each supplier has characteristics or dynamic factors that impact
riskiness or resilience to disruptions (Blackhurst et al., 2011; Ho et al., 2015). This results in
different suppliers having different levels of risk to a focal firm. Hence, risk exposure is uneven
across the network. In fact, recent research has noted the lack of research monitoring and
understanding supplier risk levels and its impact on the network (Ho et al., 2015).

We will use two extreme examples to illustrate the idea behind this hypothesis related to
the unevenness of risk amongst supplier. When the risk distribution follows a uniform distribution,
every supplier shares the same probabilities of disrupting the focal firm, but a proactive approach
is limited to taking care of one of these firms. On the other end of the spectrum, if the risk
distribution follows a Dirac Delta Distribution with one firm having a probability of 1 and the
others being 0, it is obvious which supplier is the riskiest spot. After a proactive approach handles
the riskiest spot, other suppliers have no chance to disrupt the focal firm anymore. To measure the
unevenness of the risk distribution, we calculate Gini coefficients (Gini, 1912) of the average DCP
distribution for S1. Higher Gini coefficients mean more unevenly distributed risk among a focal
firm’s suppliers. Therefore, we hypothesize:

H1: In the presence of a remote supply chain disruption, the effectiveness of a proactive
strategy is positively associated with the unevenness of risk among a focal firm’s suppliers.
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In our models, the baseline disruption probability (BDP) is the probability of a focal firm
being disrupted in our baseline setting without using a proactive strategy. Intuitively, such a
probability will impact the effectiveness of a proactive strategy. In other words, a focal firm
starting with a higher risk of disruption can benefit more from being proactive in approaching
others, while a proactive strategy will not help as much when a focal firm already has lower
disruption probabilities. Therefore, we also hypothesize:

Hla: The positive effect of risk unevenness on the effectiveness of proactive strategies is
moderated by BDP.

We contend that when BDP is higher, the positive effect of risk unevenness becomes
stronger. This is because when a focal firm is more susceptible to remote disruptions, the overall
risk caused by the focal firm’s suppliers is higher. Meanwhile, given the same unevenly distributed
DCP, with a higher overall risk of disruptions, the potential risk from the riskiest spot of the focal
firm will increase. Therefore, proactive strategies can be more effective after finding an alternative

to the riskiest spot.

5.3.2. Multi-Sourcing Ratio among Suppliers in the Supply Chain Network

A common practice for a firm to improve its supply chain network resilience against
disruptions is to add back-up suppliers by procuring the same product from more than one supplier
(Sawik, 2014a; Sawik, 2014b). Multi-sourcing approach can also be leveraged to maintain
competitiveness amongst suppliers (Heese, 2015). We have seen an increasing use of competing
suppliers in a multi-sourcing strategy in real world supply chains. For example, Apple sources
displays from multiple suppliers which maintains competitiveness between suppliers and reduce
the risk of supply disruptions (Li and Debo, 2009; Hu et al., 2017). In this paper, we measure the
level of multi-sourcing (using the supply chain network and its corresponding competition

network) with a new network-based measure called multi-sourcing ratio (MR). To calculate MR,
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we examine all suppliers of a focal firm, and find the percentage of suppliers that also compete
with another supplier of the same focal firm. A higher ratio means a higher level of multi-sourcing
for a focal firm and more competition amongst its suppliers. For example, firm A has 4 suppliers
B, C, D, and E. Among the 4 suppliers, B competes with C (where B and C are multiple sources
to the focal firm A and they are connected in the competition network), and C competes with E.
Then the MR for firm A is 75%, because 3 out of 4 suppliers for A have competitor(s) among A’s
suppliers.

If a focal firm has a supplier and the competitors of that supplier are also already serving
the focal firm (in a multi sourcing situation), then the proactive strategy will be less effective. This
is because the proactive strategy works in the following way: for the riskiest supplier of a focal
firm (depending on which remote firm is disrupted), proactive strategies pick one firm from the
riskiest supplier’s competitors and add the firm as a supplier. If a competitor of the riskiest supplier
is already a supplier of a focal firm, then adding another competitor of the riskiest supplier as a
supplier becomes redundant.

Back to the example of Apple’s display suppliers. Assume A is a display supplier for Apple
and is identified as the riskiest spot after a remote disruption. If Apple only uses supplier A as its
display supplier, then adding supplier B (which is a competitor to supplier A) as another supplier
(multi-sourcing) during proactive restructuring can be effective. However, if Apple is already
buying displays from both supplier A and supplier B, Apple already has a back-up supplier in place
in the event of supplier A failing. In this case, adding another display manufacturer C using
proactive strategies may still help, but the improvement will be less than in the case where there
was no backup supplier in place. Essentially, when a focal firm has no backup to its riskiest

supplier, proactive strategies help more. If a focal firm already has backup to its riskiest supplier
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(via multi-sourcing), then adding another backup via proactive strategies is less effective.
Therefore, we hypothesize:

H2: In the presence of a remote supply chain disruption, the effectiveness of a proactive
strategy is negatively associated with a focal firm’s multi-sourcing ratio.

5.3.3. Models and results

To test our hypotheses, we run a multiple regression model on simulation results of
proactive strategy S1 for the 181 firms in Section 5.2. The dependent variable (DV), ADisProb, is
the decrease in focal firm’s disruption probability after restructuring with strategy S1, compared
to baseline with no proactive restructuring. In other words, the DV shows how much the disruption
probability decreases after a focal firm uses proactive strategy S1.

As for covariates, control variables include a focal firm’s sector (3 dummy variables for 4
sectors), its out-degree centrality in the supply chain network® (i.e., number of customers,
OutDgrSupply), its degree centrality in the competition network (i.e., number of competitors,
DgrComp), and its BDP. The two independent variables are (1) the focal firm’s Gini coefficient
of average DCP (Risk_Gini), and (2) the focal firm’s multi-sourcing ratio (MR). We also added an
interaction term of Risk Gini*BDP to test Hypothesis 1a. The full model is specified in Equation
3. There is no strong correlation between any pair of covariates (Figure 7). Because this is a linear
regression model, we tested assumptions for such a model and included results in Appendix 3.
Note that all covariates except dummies for sectors are log-transformed to address assumptions of
linear regression models.

ADisProb; = o + [1 * Sector; + B, x OutDgrSupply; + B3 * DgrComp; + 4 * BDP; + Bs *
RiSkGinii + ﬁ(, * MRl + 37 * RiSkGinii * BDPl + €, i= 1,2,,181 (Equation 3)

¢ In-degree centrality in the supply chain network is not included, because it is highly correlated
with many other covariates (e.g., 0.68 with MR and 0.65 with Risk.)
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Figure 7. Pair-wise Pearson correlation between covariates:
*:p < 0.05; #x:p <0.01; *xx:p<0.001

Table 4 summarizes results of our regression models, each with a different set of covariates.
Confidence intervals and statistical significance are based on robust standard errors (Arellano,
1987). First, among control variables, only BDP is a significant predictor for the effectiveness of
proactive strategies. As expected, its sign is consistently positive confirming that firms that suffer
from higher disruption probabilities without proactive restructuring benefit more from the
proactive strategy. Second, Hypotheses 1 and 2 are supported. Risk Gini is a positive and

significant predictor, while MR is a negative and significant predictor of the DV. In other words,
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a firm with more unevenly distributed risk among its suppliers and a lower ratio of supply multi-

sourcing would benefit more from a proactive strategy. Last, Hypothesis 1a is also supported as

the interaction term Gini_Risk*BDP has a positive and significant coefficient (Model 3).

Table 4. OLS regression model for the effectiveness of proactive strategy S1.

Coefficient (Std. Err.)

Variable
Model 1 Model 2 Model 3
Sector Retail -0.05 (0.18) -0.09 (0.20) -0.17 (0.21)
Sector Computer -0.05 (0.19) -0.03 (0.20) -0.12 (0.21)
Control Sector Food/Beverage 0.18 (0.23) 0.14 (0.25) 0.01 (0.26)
Variabl Supply Network Outdegree -0.02 (0.08) -0.02 (0.08) -0.03 (0.08)
ariables -
Competition
Network Degree -0.06 (0.07) -0.07 (0.07) -0.07 (0.06)
BDP 0.62*** (0.08) 0.58*** (0.09) 0.62*** (0.10)
Independent Risk Gini - 0.19* (0.08) 0.22* (0.09)
variables MR - -0.18** (0.06) -0.19** (0.06)
Risk Gini*BDP - - 0.16* (0.08)
Adjusted R? 0.38 0.41 0.43
F 11.38*** 10.28%** 13.98%**

+:p <0.1; *:p<0.05 #**:p<0.01; **x:p<0.001

6. Discussion

In this section, we discuss implications for researchers and practitioners. Future research

directions extending from this study as well as limitations are also presented.

6.1. Implications for Theory and Practice

This paper builds upon recent work analyzing supply chain networks as complex adaptive

systems. We have developed a method to model and understand strategies for supply chain

adaptation in the face of disruptions. Not only does recent research tell us that the network level

implication of cascading disruption is difficult to understand (Fiksel et al., 2015), but there is a

need to reconfigure and restructure supply chain networks in response to disruptions (Hearnshaw

et al., 2013). In fact, the more that can be done to identify and “shore up” risky spots in the supply
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chain, the better the supply chain performance (Blackhurst et al., 2018). As such, we have answer
calls to build adaptive capabilities into a model for supply chain disruptions (Hearnshaw et al.,
2013; Kim et al., 2015; Van der Vegt et al., 2015) by leveraging inter-firm competition
relationships. We model the supply chain network as a CAS (Choi et al., 2001; Nair et. al., 2009)
and leverage the adaptive capabilities to reconfigure connections and structures (Anderson, 1999;
Choi et al., 2001). From a CAS perspective, we can model both close and distant disruptions and
examine strategies to mitigate their impacts. This is important as disruptions may occur outside of
the direct purview of a focal firm and propagate to it with intensifying and devastating effects. Our
approach of modeling supply chain networks as an agent-based system examines two types of
strategies: reactive and proactive to determine how firms can leverage such adaptive strategies to
improve their resilience against supply chain network disruptions.

We present our results in three stages. First, we model and analyze the impact of disruptions
on a real-world large-scale supply network and demonstrate the use and effectiveness of reactive
strategies. Next, we develop and evaluate the effectiveness of proactive strategies for firms to
improve their resilience against a distant disruption. Third, we analyze factors related to the
performance of proactive strategies. Our results have implications to both managers and
researchers alike. In our first stage, we measure the impact of reactive strategies where disruptions
occurred at high-degree and low-degree nodes. Not surprisingly, but now empirically validated
through this study, we show that high-degree node removal is more damaging to the supply
network as compared to low-degree node removal. We also illustrate the spread of a supply
disruption with and without a reactive strategy. A reactive strategy was shown to reduce the

number of nodes impacted by almost 50-fold (from over 1,400 to less than 30). This provides a
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baseline for our model and also demonstrates the importance of considering firms’ adaptive
behaviors when evaluating a supply chain network’s performance against disruptions.

However, based on recent calls in the research, such as Blackhurst et al. (2018), to focus
more on proactively managing risk, we develop and model proactive strategies. Such strategies are
used when a disruption occurs at a distant firm (beyond first tier) but has not yet impacted the focal
firm. Proactive strategies identify the weakest spot specific to the disrupted distant firm in the
network. A replacement supplier is identified from the competition network and the supply
network is restructured in a proactive manner. The first proactive strategy (S1) requires a large
number of simulations, while the second proactive strategy (S2) uses a heuristic approach to
identify the riskiest spots in the supply network. We empirically model and validate the superiority
of proactive strategies over reactive strategies. We illustrate that even though a disruption may not
originate from a focal firm’s immediate neighbors, it can propagate to the focal firm (Kim et al.,
2015; Blackhurst et al., 2005). Our strategies demonstrate a way to mitigate the impact of these
potential damaging disruptions and develop resilience to allow firms to continue adding value to
customers as called for by Ambulkar et al. (2015).

Next, in order to better understand factors impacting the effectiveness of proactive
strategies, we ran regression analyses. We proposed that two factors specifically could affect the
effectiveness of proactive strategies: the evenness of risk among suppliers of the focal firm and
the ratio of multi-sourcing among suppliers of the focal firm. We find that with higher evenness
of risk, proactive strategies become more effective. However, the more multi-sourcing exists in
the supply base, proactive strategies become less effective. Such findings greatly improve the
practical value of our proactive strategies because they can better inform managers on whether

their firms should adopt the proactive strategy when a distant disruption occurs. This is important
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for managers, because they are charged with the delicate balancing act of risk versus reward in the
supply chain. The findings can also help managers address the question of where and how to invest

valuable and limited resources (Chopra and Sodhi, 2004; Tomlin, 2006; Chopra and Sodhi, 2014).

6.2. Directions for Future Research and Limitations

There are also many exciting possibilities to extend this research. For example, in our
agent-based models, a firms’ decision-making strategies, especially how an alternative supplier
decides which request to accept, can incorporate more factors, such as geographical proximity,
contract negotiation, the competition relationship between the requester and the alternative
supplier. The way we design alternative suppliers’ upper limit of accommodating new requests
can be improved to be more realistic as well. In addition, this research may have interesting
implications for supply base management policies. For example, Shao (2017) notes that a supplier
may (on its own) subcontract out to competition in order to win a bid. In this case, the focal firm
views the supplier as a single source but that supplier may be subcontracting out to other suppliers.
In this case the multi-sourcing nature of the supply base in not controlled by the focal firm but
rather a supplier. Such nuances would be interesting extensions.

Also, our model focuses on how a disruption propagates from disrupted suppliers to their
customers. However, losing a customer may negatively affect a supplier’s supply chain operation
as well. Adding such upstream propagation to our model will be helpful to better capture the impact
of disruptions. In addition, a model that considers the recovery of a firm after it is removed from
the supply chain network will be interesting, although our current model does not incorporate such
recovery due to increased complexity. Comparing to removing one firm and examining how the
disruption propagates, removing multiple firms simultaneously at the beginning of the simulation

can also be valuable, because this can reflect to disruptions caused by disasters in a larger
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geographical region or political/military turmoil in a country. Alternatively, we can also specify
the type of disruptions for the initial node removal because disruptions caused by exogenous
shocks, such as natural disasters and industry-wide decline, and endogenous processes, such as
competitive dynamics, may affect other firms in the network in different ways.

In terms of adaptive strategies, the reactive and proactive strategies we investigated in this
paper restructure a focal firm’s network after a disruption occurs among the focal firm’s immediate
suppliers or distant nodes respectively. It would be interesting to develop a preemptive strategy,
which guides a focal firm to more strategically restructure its networks for possible disruptions in
the future. Last but not least, analyzing how large-scale supply chain networks and the competition
networks co-evolve over time would also be an interesting undertaking, because we may be able
to identify major disruptions that actually happen, and track how firms react to these disruptions
from real-world data over time. Such longitudinal data can potentially help us validate our model
of firms’ adaptive behaviors.

Finally, this study is not without limitations. First, our supply chain network model is
constructed from Mergent Horizon. The data is verified to be accurate and enables us to build a
large-scale multi-tier supply chain network along with a competition network that adds another
layer of relationship among these firms. However, this dataset may not capture all the relationships
and entities in the network. For example, Boeing’s customers include government agencies, which
may also be customers to Microsoft and thus constitute hidden connections between Boeing and
Microsoft. As we focus on firms only, government agencies are not included in our dataset,
although a political or military event can disrupt such entities and may affect supply chain
operations of Boeing and Microsoft. Also, our sampling of the dataset relies on snow-ball sampling

starting from one seed node. This method helps to yield a multi-sector multi-country supply
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networks, but it may also introduce bias as more connected firms are more likely to be sampled.
We try another sample with 27 seed nodes and find that this sample yields a network similar to the
one used in this study (see Appendix 1 for details). However, we still acknowledge that potential
bias may exist in the supply network used in this study. Second, while our verified ABM is based
on a decision-making logic that reflects our knowledge of real-world supply chain operations, it is
extremely difficult to obtain empirical data on firms’ moves after supply chain disruptions to
validate such a schema. That is also a common challenge for many ABMs, and we hope we can
address this issue in the future. Third, our model focuses on firms’ short-term reactions to a
disruption, because we remove a firm from the supply network and does not consider if and when
the firm will come back to normal operations. To include med- or long-term reactions to a
disruption, the model will have to incorporate a node availability check component, as well as how
firms deal with alternative suppliers when their original suppliers resume normal operations. Last,
when evaluating the effectiveness of different adaptive strategies, we do not consider the cost of
adding new suppliers. Therefore, our adaptive strategies provide the best-case scenario. Firms need

to consider costs of such strategies when deciding which alternative supplier(s) to approach.
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Appendix 1. Comparison between two datasets and supply chain networks

This appendix compares the dataset (D;) and the supply chain network based on it (referred to as G
) used in the paper with another dataset (D;) and the supply chain network G’ based on D,.

D; was collected using Boeing as the seed firm. By contrast, D, used 27 seed firms from various
sectors. According to Gartner’s supply chain performance ranking in 2015 (Gartner, 2015), 25 of
these 27 firms were ranked with in top 25, and the other two were named “supply chain masters”.
The 27 firms are listed in Table A1-1. Note that Boeing is not one of the 27 firms. The collection
of D, followed the same procedure as D;. Both datasets were collected from the Mergent Horizon
database.

Table A1-1. List of seed firms for D,. (“Supply chain masters” are marked

with *)

Amazon.com The Coca-Cola Company Johnson & Johnson
McDonald's Starbucks L'Oréal
Unilever 'Wal-Mart Stores Cummins
Intel M Toyota Motor
Inditex PepsiCo Home Depot
Cisco Systems Seagate Technology Apple*

H&M Nestlé P&G*
Samsung Electronics Lenovo

Colgate-Palmolive Qualcomm

[Nike Kimberly-Clark

Compared to the 2,791 firms in D;, D, has 4,406 firms. However, the sector distributions (i.e., the
percentage of firms from each sector) are very similar. The Pearson correlation coefficient between
sector distributions in the two datasets is 0.88 (p-value<0.001). When we fit a linear regression
between sector percentages from D, vs sector percentages from D;, we got a fitted straight line
with a slope of 0.86 and R-squared of 0.78. The results are statistically significant with a p-value
< 0.001. This indicates a strong linear and positive relationship between the industry sector
distributions in the two datasets.

Using dataset D,, we also built a supply chain network G’ using the same approach we built G
with D;. Figure A1-1 shows the degree distribution G’ in log-log scale. Similar to G, the degree
distribution is also best represented by a Truncated Power-law: log-likelihood ratios for pairwise
comparisons between Power-law (PL), Truncated Power-law (Truncated PL), Exponential (EXP),
and Log-Normal (LN) are 1.682 (p-value <0.1) for PL vs Truncated PL, 6.805 (p-value <0.001)
for Truncated PL vs EXP, 3.194 (p-value <0.05) for Truncated PL vs LN, 6.388 (p-value <0.001)
for PL vs. EXP, and 6.679 (p-value < 0.001) for LN vs. EXP.

Table A1-2 compares the four network statistics of the two networks, namely network density,
average path length, network diameter, and average clustering coefficient. First, the two networks
share similar densities, even though G|’ is much bigger. Second, G|’ has slightly longer average
shortest path length (a.k.a., characteristics path length), but lower clustering coefficient. This is
expected for G, that has more nodes, because for networks with power-law-like degree



distributions, characteristics path length scales with log(N)/log(log(N)), and clustering coefficient

scales with log(N)/N, where N is the number of nodes (Thadakamalla, Raghavan, Kumara, &
Albert, 2004).

All the comparisons above showed that dataset D; and supply chain network G used in our study
represent a reasonable sample of the Mergent database.
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Figure Al-1. Degree distributions of the new supply network G;'.

Table A1-2. Network Statistics of Gg and G’

DENSITY CHAR.PATHLEN. AVG. CLUSTERING COEF.

G 0.001 4704 0.057
G 0.001 5.007 0.048
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Appendix-2. Flow diagrams and pseudo code for the agent-based model

Figure A2-1 shows the flow diagram of our agent-based model. Figure A2-2 summarizes agents’
behaviors in the model.

Major Simulation Components
Input Customers of removed firms seek
The supply chain alternative suppliers based on the
network and its clusters competition network. Output

The competition network Alternative suppliers approached by The list of firms
Firm attributes other firms decide whose supply removed and disrupted
A firm to be removed at requests to accept.
the beginning Possible removal of firms when they

cannot secure alternative suppliers.

Figure A2-1. The flow diagram of the agent-based model.

Agent behavior
in the model

/\

AS A CUSTOMER AS AN ALTERNATIVE SUPPLIER
Seek alternative supplier if one of its Decide whether to accept new supply

suppliers is removed. requests from previous customers of a
1) Identify alternative supplier based removed competitor.

on competitors of the lost supplier. || 1) check if itself still has extra capacity to
2) Approach alternative suppliers one accommodate new customers.

at a time. 2) If so, accept a new supply request
3) If an alternative supplier accepts its based on

request, establish a new tie with 1) Existing partnership
the supplier. _ o 2) Firm size of the requester

4) If no alternative supplier is secured, 3) Similarity between the supplier
the firm may be removed. and the requester’s lost supplier

Figure A2-2. A summary of agent behaviors in the model.



The following pseudocode summarizes the major steps of our simulation framework.

VARIABLES :
o GV, Ey) --Supply chain network
o GV, Ep) --Competition network
o V--A full set of firms (i.e. nodes)
o E—A full set of edges in the supply chain network
o E,—A full set of edges in the competition network
o v,--AnodeinV
o V4--A list of disrupted nodes
o V,.--A list of nodes to be removed
o  Vi--AnodeinVter
o S, --Suppliers of vy (preceding nodes in Gs)
o s,--AnodeinS,
o C,--Customers of v, (succeeding nodes in Gs)
o V,—-AnodeinC,
e P,--Competitors of vy (neighbors in Gp)
o v,—-Anodein P,
o U,--The upper limit of v, to accept requests as alternative suppliers
o LS,—A list of lost suppliers of v
o Is,—-Anodein LS,
o q,—-The alternative supplier that node vy sends request to
o Reqy-—-A list of nodes that send requests to node vy
o req,—-A node in Req,
o Accy--A list of nodes whose requests accepted by node v,
e accy--A node in Accy
o Rej,—-A list of nodes whose requests rejected by node v,
o rej,—-A node in Rej,
o trial,--Number of requests sent by node v,
o iter--Current iteration of a simulation cycle
t--Current time tick in one iteration of a simulation cycle
®  pmn--Probability that vy, a customer of v;, sends a request to candidate supplier vy
o FEg--A list of edges to be added to G

CONSTANTS:
o maxlter = 13 // The maximum iteration of one simulation cycle.
o maxTrial = 10 // The maximum number a node can send requests for alternative suppliers in
one simulation cycle.
e Revenue, // Revenue level (firm size) of node v,: small, medium, and large



MAIN PROGRAM

START simulation

FOR iter = 1 to maxliter
SET E, = @ // Empty the set of edges added in the previous iteration.
IF iter==
INITIALIZEV;=0,V,.=0
FOR each v, €V
INITIALIZE U, based on simulation settings in Table 4.
INITIALIZE Req,, Accy, Rej,
SET trial, =0
END FOR
ELSE
FOR each v, €V
RESET Req,, Accy, Rej
END FOR
END IF

FOR each v; € V,. // Remove nodes
OBTAIN C; and P; // Find customers and competitors for nodes to be removed
FOR each v,, € C; and each v, € P,
OBTAIN pyn
END FOR
Gsst—Ul‘; szGp—Ui;
Remove v;’s edges from E; and E)
END FOR
SET V, = @ // Empty the set of nodes to be removed

FOR t =1 to maxTrial
// Send requests to alternative suppliers
FOR each v, €V
IF v, has no lost suppliers OR trial, == maxTrial
CONTINUE
END IF
// Send out requests for each of the lost suppliers of node vy
FOR each Is, € LS,
DRAW g, according to pmn
Send request to g,
trial, = trial, +1 // vys number of trials increase by 1

END FOR
END FOR

// Alternative suppliers handle requests
FOR each v, €V
IF U, <1 OR Req, =@ // This node has no extra capacity
CONTINUE
END IF



OBTAIN Accy,Rej, // Decide which requests to accept and reject

FOR each acc, € Acc, // Accept requests and add edges

IF edge V,—acc, NOT in Gy
APPEND (V,,accy) to E,
END IF
Uy=U,—1 // The extra capacity decrease by 1
END FOR
FOR each rej, € Rej,
REMOVE v, from rej,’s candidate list
END FOR
END FOR
END FOR

FOR each v; € V.. // Increase the capacity for suppliers _for removed nodes
FOR each s; € S;
Ul' = Ui +1
END FOR
END FOR

ADD edges in E, into Gg

FOR each v, €V //Check which node is disrupted
IF v, cannot secure suppliers compared to what is has in iter — 1
Va=Vga+ v, //Set this node as disrupted
END IF
END FOR

FOR each v, € V 3//Check which disrupted node(s) should be removed
IF v, is to be removed based on a normal/uniform distribution with mean in Eq.-1.
V,.=V,.+ v, //Set this node as to be removed
Vd = Vd — Uy
END IF
END FOR

END FOR
STOP simulation



Appendix 3: Examining assumptions of linear regressions

The validity of linear regression results depends on three assumptions. In this appendix, we test
these assumptions for our regression model on factors impacting the effectiveness of proactive
strategies.

1. Linearity

Linear regressions assume the existence of linear relationships between independent and dependent
variables. We first apply Harvey Collier test (Harvey & Collier, 1977) for linearity validation. The
p value is less than 0.001 — there is sufficient evidence that we reject the null hypothesis of linearity.

To address such non-linearity issue, we apply logarithm transformations to all covariates except
the three dummy codes for sectors. Applying the same test on the linear regression model with
transformed data, the p value becomes 0.1 where we fail to reject the linearity assumption. In the
following two sections, we test the model with log-transformed data against normality and
homoscedasticity assumptions. Regression models we used in the main paper are also based on log-
transformed data.

2. Normality

We apply quantile-quantile (Q-Q) plot to examine normality of the residual score. As Figure A.3.1
shows, there is a strong linear relationship (% = 0.89, p < 0.001) between sample and theoretical
(in this case, our reference distribution is normal distribution) quantiles. At the same time, the
scatter points do not fall on a straight line, indicating some degree of non-normality in the residual.

Nonetheless, we argue that, first of all, normality is not a necessary assumption for linear regression
models. Specifically, according to Lumley et al. (2002):

“... [Normality] is not necessary for the least-squares fitting of the regression model but it is
required in general for inference making ... only extreme departures of the distribution of Y
from normality yield spurious results.

This is consistent with the fact that the Central Limit Theorem is more sensitive to extreme
distributions in small samples, as most textbook analyses are of relatively small sets of data...”

Further, our sample size of 181 is large enough for the statistical inference to be effective. Past
studies have shown that sample sizes of 40 (Barrett & Goldsmith, 1976) or 80 (Ratcliffe, 1968) are
large enough to diminish the departure from normality for inference.
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Figure A.3.1. Quantile — Quantile plot for residuals.

3. Homoscedasticity

Homoscedasticity requires that the variance of error terms (i.e. residuals) stay constant across
different values of independent variables. We apply the Breusch-Pagan test (Breusch & Pagan,
1979) and obtain a p-value less than 0.001, which indicates heteroscedasticity. To address this
problem, we used robust standard errors [a.k.a, White standard errors; (Arellano, 1987)] in the
model, which is a common way for dealing with heteroscedastic data in linear regression models.
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