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Abstract
Through the development and usage of an agent-based model, this paper investigates firms’ 
adaptive strategies against disruptions in a supply chain network. Viewing supply chain networks 
as complex adaptive systems (CAS), we first construct and analyze a real-world supply chain 
network among 2,971 firms spanning 90 industry sectors. We then develop an agent-based 
simulation to show how the model of firms’ adaptive behaviors can leverage competition 
relationships within a supply chain network. The simulation also models how disruptions 
propagate in the supply chain network through cascading failures. With the simulation, we seek to 
understand if firms’ adaptive behaviors can reduce the impact of disruptions in these networks. 
Therefore, we propose, evaluate, and analyze two types of adaptive strategies a firm can leverage 
to reduce the negative effects of supply chain network disruptions. First, we deploy in our model 
a reactive strategy, which restructures the network in response to a disruption event among first-
tier suppliers. Next, we develop and propose proactive strategies which are used when a distant 
disruption is observed but has not yet hit the focal firm. We discuss the implications related to how 
and when firms can improve their resilience against supply disruptions by leveraging adaptive 
strategies. 
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1. Introduction

Due to the complexity, uncertainty and interdependence of today’s supply chains, there is 

an increased risk of loss in the supply chain network due to a disruption event (Bode et al., 2011; 

Bode and Wagner, 2015; Kamalahmadi and Parast, 2016). A disruption in a supply chain network 

is defined as an event that disrupts the flow of goods or services (Craighead et al., 2007). Losses 

stemming from supply chain network disruptions may manifest as financial loss, a loss in 

operational performance and even a loss of market position (Hendrick and Singhal 2003; 

Hendricks and Singhal, 2005; Wagner and Bode, 2008). Moreover, because of the interconnected 

nature of supply chain networks, a disruption may propagate and cascade through the supply chain 

(Hearnshaw et al., 2013; Fiksel et al., 2015) with increasing magnitude or severity of impact (Van 

der Vegt et al., 2015). In other words, a disruption may not originate from the focal firm’s 

immediate suppliers but rather elsewhere in the network (Blackhurst et al., 2005; Kim et al., 2015). 

A lack of understanding of how the supply chain network is structured may exacerbate the impact 

of disruptions and inadvertently allow disruptions to propagate (Kim et al., 2015). Managers of 

real-world supply chains find the cascading effect or propagation of a disruption difficult to 

understand (Fiksel et al., 2015). The ability to restructure the supply chain in the face of changing 

conditions is critical to maintain continuity of supply chain performance (Hearnshaw, et al. 2013).  

Flows of materials within the supply chain network need to be redirected and structures need to be 

adapted to allow for continuity in operations. As such, there have been calls to examine the 

structure of supply chain networks and determine the ability of the network to adapt in the face of 

supply chain disruptions (Hearnshaw et al., 2013; Kim et al., 2015; Van der Vegt et al., 2015). 

In this study, we view a supply chain network as a complex adaptive system (CAS) (Choi 

et al., 2001) where, in the face of a disruption, firms connected in a complex network have the 
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ability to adapt and restructure their connections. The CAS framework provides a useful theoretical 

foundation for this study (Thomson, 1967; Anderson, 1999; Choi et al., 2001) as firms in a supply 

chain operate as an interconnected network in a dynamic environment (Blackhurst et al., 2011; 

Bode et al., 2011; Kim et al., 2011). Therefore, even a small change at one node in the chain can 

cause a disruption to spread, impacting other nodes in the chain (Craighead et al., 2007). We posit 

that firms in a supply chain constitute self-organizing networks. In addition, some supply chains 

can be adaptive or resilient. When hit with a disruption, they can adapt or restructure themselves 

to reach a desirable state (back to the original state, an equivalent state, or better) (Ambulkar et al., 

2015). In viewing supply chain networks as adaptive systems, the ability to adapt and restructure 

is critical for minimizing losses from disruptions (Hearnshaw et al, 2013; Ambulkar et al., 2015). 

The effectiveness of adaptive restructuring strategies in improving network resilience after node 

removal has been illustrated in other complex systems, such as food webs (Staniczenko et al. 

2010). In addition, Nair and Vidal (2011) noted that network topology is an important factor with 

regards to spreading disruptions. However, recent research on resilience to supply chain 

disruptions has not fully incorporated the role of network structures (Kim et al., 2011) and lacks a 

clear understanding of disruptions and their impact at a network level (Kim et al., 2015). In other 

words, understanding how disruptions impact multiple tiers in a supply chain and how the structure 

of the network may play a role in this impact is lacking. In order to address these gaps in the 

research, we seek to answer the following research question: 

How can firms leverage different types of adaptive strategies in the supply network to 
improve resilience against supply disruptions? 

Inspired by both supply chain management and network science literatures on rewiring 

edges (Watts and Strogatz, 1998; Zhao et al., 2011b), our study presents and examines two types 

of adaptive strategies to restructure a supply chain network: 1) a reactive strategy, which 



4

restructures the network in response to a disruption event among first-tier suppliers. In other words, 

reactive strategies are used when an immediate supplier of a focal firm fails. Next, we develop and 

propose 2) proactive strategies. These strategies focus on restructuring the network after observing 

a distant firm failure (beyond first tier) in order to avoid possible disruptions to the focal firm. 

Representing a forward-looking approach, proactive strategies are in anticipation of a disruption 

(which has already occurred in another part of the network) hitting the focal firm and will identify 

the weakest spot specific to the disrupted distant firm in the network. 

In order to study firms’ adaptive strategies that improve their resilience to supply chain 

disruptions, this study develops agent-based simulations based on large-scale real-world supply 

networks. Our modeling of  adaptive behaviors incorporates the structure of both supply chain 

networks (which connects partner firms in the supply chain,) and competition networks (which 

connect competing firms in the supply chain) so that we can investigate how competition 

relationships among firms in a supply chain network can be exploited to develop resilience against 

disruptions (in Sections 4 and 5.1). The two networks are again used to model and analyze firms’ 

proactive strategies (in Section 5.2) including factors related to the effectiveness of proactive 

strategies (in Section 5.3).

This research proceeds in four steps: First, we collect data of 2,971 firms from 90 industries 

to construct a large-scale supply chain network among these firms, along with an accompanying 

competition network. The data was collected through scraping a database for information on firms 

including their financial data as well as relationship data among firms.  We reveal the complex 

structural properties of these networks and show a firm’s partnership and competition with others 

are interweaved. Second, we design agent-based simulation models for firms’ reactive strategies 

in this complex system, and the propagation of disruption impact. Third, we use the models to 
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evaluate the impact of disruptions and illustrate the effectiveness of reactive behaviors in reducing 

the impact of disruptions. Fourth, we propose, evaluate and analyze proactive strategies that firms 

can use to improve their supply chain resilience against distant disruptions. 

This study makes a number of important contributions to the understanding of supply chain 

networks. First, our agent-based model leverages structures of both real-world supply chain and 

competition networks as well as firm attributes, to realistically model key components of 

complexity in supply chain networks, namely the propagation of a disruption in the supply chain 

and firms’ adaptive behaviors to manage disruption risk. The use of competition networks opens 

interesting possibilities to not only handle disruptions more effectively, but also to gain advantage 

in the market by leveraging visibility of relationships and structures within the network. Second, 

we illustrate how the insights gained in this study can be used by a focal firm to restructure its 

supply chain network  so that it becomes more resilient against supply chain network disruptions 

in a real-world setting. By using both the supply chain and competition networks, this research 

helps to better understand the effectiveness of adaptive strategies within complex supply chain 

networks in the face of supply chain disruptions.

The remainder of this paper is organized as follows. After covering the theoretical 

foundation and related studies for this research in Section 2, we introduce how we collect empirical 

data to construct and analyze large-scale supply chain and competition networks in Section 3. 

Section 4 describes the agent-based model we develop for this research, and Section 5 shows 

results from our simulations and related experiments. The paper concludes with a discussion of 

the results, future work and limitations in Section 6. 
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2. Literature  

This section covers the literature related to supply chain networks as complex adaptive 

systems as well as disruptions in the supply chain network. 

2.1 Supply Chain Networks as Complex Adaptive Systems 

Based on the seminal work of Choi et al. (2001), a CAS is defined as an “interconnected 

network of multiple entities (or agents) that exhibit adaptive action in response to both the 

environment and the system of entities itself” (Pathak et al., 2007, pg. 550). A CAS is a self-

organizing system and it reconfigures its internal and external linkages to continually evolve over 

time (Anderson, 1999; Choi et al., 2001). Kim et al. (2015) and Nair et al. (2009) note that CAS is 

a useful theory in describing supply chain network structures. Pathak et al. (2007) term supply 

networks as a typical case of CAS because a supply chain will adapt via interactions of nodes 

within the network and evolve over time. In applying CAS to supply chain networks, Pathak (2007, 

pg. 562) states that such a network consists of “interconnected autonomous entities that make 

choices to survive and, as a collective, the system evolves and self-organizes over time”. This is 

particularly applicable in looking at disruption propagation in supply chains. In a supply chain 

network, a disruption such as a supplier failing will cause the agent (focal firm) to seek an 

alternative supplier (using schema defined as a plan or decision-making logic) leading to a change 

in the network structure. Interestingly, Choi et al. (2001) note that supply networks are complex 

and dynamic, and changes that occur within the network (such as at a second or third tier supplier) 

are often outside of a focal firm’s awareness. In a supply chain network disruption context, this 

means that a disruption can occur without the focal firm knowing that it will be affected. However, 

because of the interconnected nature of the network, a disruption may propagate and worsen and 

eventually have a severe impact to the focal firm (Hearnshaw et al., 2013; Fiksel et al., 2015). In 
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this paper, a CAS lens allows us to view a supply network as a complex system where individual 

firms can adapt and restructure their networks in the face of a supply chain disruption. 

2.2 Disruptions to Supply Chain Networks

While researchers have studied the resilience of supply chain networks from a complex 

network perspective (Thadakamalla et al. 2004; Zhao et al. 2011b; Kim et al., 2015; Zhao et al., 

forthcoming), structures of large-scale supply chain networks have often been synthetically created 

based on the assumption that supply chain networks follow certain network topologies, such as ER 

random, small-world, or scale-free networks (Pathak et al., 2007). While these topologies have 

been observed in various complex social and physical networks, their applicability for supply chain 

networks are not clear in the literature. For example, empirical studies on supply chain network 

structures have found that some supply chain networks have truncated power-law degree 

distributions (Saavedra et al., 2008), while some do not (Atalay et al., 2009; Kito et al., 2014). 

Another disadvantage of using synthetically created supply chain networks is that the connection 

between firm/node attributes (such as industry and size) and their network positions is often 

ignored, even though both firm attributes and network positions are important when measuring 

resilience against disruptions. For example, a large retailer (e.g., Walmart) may have a great 

number of suppliers but few customer firms in the supply chain network, while a semiconductor 

firm with a medium size (e.g., ARM Holdings PLC) can have the opposite network position: many 

customers and few suppliers. 

There have been studies based on real-world supply chain networks, but they are often 

limited to networks for a specific product, such as automobiles (Kim et al., 2011). Although such 

an approach can help to understand a focal firm’s operation at a very fine-grained level (e.g., 

different parts for a product), it can be challenging to obtain such detailed information of product-
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level flows among firms and how each firm uses parts it procures from suppliers to produce its 

own products, especially when the network goes beyond a couple of hundred nodes. 

A recent study (Brintrup et al., 2016) made a notable effort to address this problem by 

integrating product flows among more than 18,000 inter-connected firms in the automobile 

industry and studied disruptions to this network from a topological perspective. However, at such 

a large scale, product information is only available at the level of generic product categories (e.g., 

air conditioner and gearbox) rather than for specific product models, and relationships among 

different products (e.g., what parts are needed to produce an air conditioner) are very difficult to 

capture. Another limitation of these product-specific supply networks is that ties among firms 

mainly reflect how parts or materials related to the product would flow from various suppliers to 

the focal firm. Other connections among the focal firm’s suppliers are often missing or incomplete 

if they are not directly related to the product. For possible disruptions to a specific product (e.g., 

automobiles), such networks are sufficient and provide accurate information on the flow of related 

goods. However, firms often feature different lines or types of products for different types of 

customers (e.g., Samsung Electronics manufactures smartphones, TVs, and home appliances for 

consumers, along with semiconductors, LED panels, and network infrastructures for other firms). 

Thus, studying disruptions at the firm level requires the collection and aggregation of such product-

specific supply networks for different products a firm provides, which is a daunting task. 

Meanwhile, while some have examined the resilience of large-scale real-world supply 

chain networks, studies focused on the propagation of disruptions and the effect of adaptive 

behaviors during propagation are lacking in the literature. For example, Brintrup et al. (2011) focus 

on the resilience of Toyota’s supply chain network from a topological perspective. Saavedra et al. 

(2008) analyze how a supply-chain network in the garment industry shrank over years. They 
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propose a preferential-attachment model for how a node replaces a lost partner with a new one that 

is already well connected in the network. However, these studies do not incorporate the cascading 

failures of nodes nor the effects of firms’ adaptive strategies. Therefore, this study seeks to 

understand how firms can restructure supply chain networks to improve their resilience against 

cascading disruptions.

3. Network Construction and Analyses

In this section, we will describe how we collect data, construct the supply and competition 

networks, and illustrate characteristics of the two networks.

3.1 Data Collection and Network Construction

Our supply chain network is created from a secondary data source using Mergent Horizon 

(http://www.mergenthorizon.com). Mergent Horizon lists information about global firms 

including company reports, financial data, competitors, customers and suppliers. We scrape the 

database using a snow-ball sampling approach, a technique for collecting large-scale network data 

(Carrington et al. 2005), with the Boeing Company as the seed node or anchor for the entire 

network in order to give perspective to the network. Raw HTML files from each firm’s web page 

in the database are collected by our scrapers (a computer program that retrieves and parse files 

from the Web), and parsed to retrieve not only its attributes, but also its suppliers, customers, and 

competitors, for subsequent scraping. Firms in our final dataset include Boeing’s tier-1 suppliers, 

tier-21 suppliers, and tier-3 suppliers, as well as Boeing’s customers, and customers of Boeing’s 

tier-1 and tier-2 suppliers. In addition to firms, the final dataset also includes supplier-customer 

1 Note that when going beyond first tier suppliers, we cannot guarantee a supplier of a firm’s tier-1 
suppliers is a tier-2 supplier of the firm. This is because we do not have data on exact product flows 
among firms and how a firm uses its incoming materials to generate outgoing products. However, for the 
purpose of simplicity and naming convention, we still call these firms as tier-2 suppliers of the focal firm. 
Similar naming schemes apply to tier-3 and tier-4 suppliers.

http://www.mergenthorizon.com/
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relationship among all the firms in the dataset. The unshaded portion of Figure 1 shows the 

coverage of firms in our dataset, where the direction of arrows corresponds to the direction of data 

collection. Also, even though our data collection starts with Boeing, the network is not centered 

on Boeing, because for each firm, we also capture its relationships with all other firms that appear 

in the dataset. 

Our data collection (see Figure 1) yields 2,971 firms that are headquartered in 63 countries 

from North America, Europe, Asia, Latin America and Africa. As earlier mentioned, firms in our 

dataset span beyond the Aerospace industry, and cover 90 different sectors, with Internet & 

Software (8.65%), Semiconductors (5.39%), and Industrial Machinery & Equipment (4.54%) 

being the top 3 most-represented sectors. Such a rich dataset enables us to build a large-scale global 

supply chain network that spans multiple industries2. 

In addition to building a supply chain network based on relationships of a firm’s suppliers 

and customers, our collection of competitor data for these 2,971 firms, along with the product 

overlap between two competitors (provided by Mergent), makes it possible to construct a 

competition network among these 2,971 firms. Competitors beyond these 2,971 firms are not 

included in the competition network. The supply and the competition networks among the same 

set of firms are essentially a multi-relational network among these firms (Yan et al, 2012: Zhao et 

al., 2016), but we treat them as two networks to simplify implementations. 

Constructions of the two networks are shown side by side in Figure 1 with the shaded 

portion being the competition network. The original supply chain network is denoted by  𝐺𝑠(𝑉,𝐸𝑆)

and the competition network by . The two networks share the same set of nodes V, with 𝐺𝑃(𝑉,𝐸𝑃)

2 To show the dataset we collected with Boeing as the seed firm is a representative sample, we also 
retrieve another set of data, and find that the new data and the network based on it feature similar 
characteristics with the ones used in this paper. More details are in Appendix 1.
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|V|=2,971. Each node  corresponds to a firm. However, the edge sets are different for the two 𝑣𝑖 ∈ 𝑉

networks.  in the supply chain network represents a directed and unweighted supply edge 𝑒𝑖,𝑗 ∈ 𝐸𝑆

from  to , which means  is a supplier of  . By contrast,  in the competition network 𝑣𝑖 𝑣𝑗 𝑣𝑖 𝑣𝑗 𝑒′𝑖,𝑗 ∈ 𝐸𝑃

is a directed and weighted edge between  and , indicating that  is a competitor of . The 𝑣𝑖 𝑣𝑗 𝑣𝑖 𝑣𝑗

weight of  is proportional to the product overlap between  and . Take three firms, Boeing 𝑒′𝑖,𝑗 𝑣𝑖 𝑣𝑗

(ID 1048), Curtiss-Wright (ID 287) and Airbus Group (ID 103714), as an example. Curtiss-Wright 

is a supplier of Boeing and  is an edge in the supply chain network. Airbus Group is 𝑒287,1048 ∈ 𝐸𝑆

a competitor of Boeing. Among Boeing’s areas of business, 10 out of 17 are also within Airbus 

Group’s areas of business. Thus, there is an edge  in the competition network 𝑒′1048, 103714 ∈ 𝐸𝑃

with weight 10/17=0.59.

Figure 1. Data collection flow for our supply chain network and competition network.
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3.2 Topological Analyses

Figure 2 visualizes the supply chain network. Table 1 provides a summary of the basic 

statistics of the supply and competition networks including number of nodes, number of edges, 

characteristic path length (the average shortest path length between a pair of nodes), diameters (the 

maximum of shortest path length between any two nodes), and clustering coefficients (the 

probability that a node’s two neighbors are connected to each other). For example, the average 

distance between two nodes in the supply network is only 4.7 hops, and any two nodes are no more 

than 13 hops away from each other. These characteristics are similar to many real-world complex 

networks (Newman, 2003).

Both the supply and the competition networks feature complex topologies with highly-

skewed degree distributions (Barabasi and Albert, 1999; Albert and Barabasi, 2002). In Table 2, 

we compare four common degree distributions for complex networks—Power-law (PL), 

Exponential (EXP), Truncated Power-law (Truncated PL), and Log-Normal (LN). We find that 

Truncated PL offers the best fit for the supply network’s degree distribution. As for the competition 

network, Truncated PL still fits its degree distribution better than the other three, although 

differences are not statistically significant when comparing Truncated PL with LN and PL. Figure 

3 shows both networks’ degree distributions with fitted Truncated PLs estimated using the 

approach by (Clauset et al., 2009). In other words, most nodes in the network have few neighbors, 

while there are few nodes with many neighbors. According to previous studies (Thadakamalla et 

al. 2004; Zhao et al. 2011a), such a supply network with highly skewed degree distributions is 

usually robust against random failures but is more fragile when important nodes with high degrees 

are removed. We will evaluate this later in our simulation analysis.
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Figure 2. Visualization of the supply chain network. The size of a node is proportional 

to the corresponding firm’s size, measured by log(revenue); the color of a node represents 

the network cluster (generated with modularity maximization) the node belongs to.
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Table 1. Basic network statistics
# of 

nodes
# of 

edges
characteristic 

path length diameter clustering 
coefficient

Supply Network 2,971 9,535 4.704 13 0.179

Competition Network 2,971 6,372 5.229 13 0.401

Table 2. Degree distributions of the two networks. 
Supply Network Competition Network

Truncated PL vs. PL 5.461*** 0.406
Truncated PL vs. EXP 10.001*** 2.460**
Truncated PL vs. LN 2.452* 0.745
LN vs. EXP 9.795*** 2.458*
LN vs. PL 4.745*** 0.216

∗ :𝑝< 0.05; ∗∗ :𝑝< 0.01; ∗∗∗ :𝑝< 0.001
Note: The table shows log-likelihood ratios for pairwise comparisons between candidate 
distributions. If the value is positive, the first distribution is better. Otherwise, the 
second one fits the data better. For example, 6.168 indicates that, for the supply 
network, Truncated Power-law fits the degree distribution better than Power-law. 

Figure 3. Log scale degree distributions of the supply network (left), and the competition 
network (right). The mathematical equations are fitted Truncated Power-law for each 
degree distribution. 

In addition, we also find a surprising relationship between the supply chain and competition 

networks. As shown in Figure 4, it is possible that a firm’s competitor is also among the same 

firm’s upstream suppliers. For example, there is a probability of 7% that a competitor of a focal 

firm also serves as the focal firm’s upstream supplier that is 3 hops away in the supply chain 
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network. Such a probability is as high as 20% for a competitor to be an upstream supplier that is 4 

or more hops away.

All these findings further highlight the complexity embedded in supply chain networks: 

two randomly chosen firms are, on average, within only 5 hops away from each other in the supply 

chain network, and a firm’s competitor can also serve as an upstream supplier. They also illustrate 

the necessity to build a large-scale firm-level supply chain network using real-world data, because 

synthesized networks or product-specific networks can hardly reveal such structural complexity.

Figure 4. Probability of a firm's competitor is among its upstream firm at different 
distance.

4. The Agent-based Model

Agent-based modelling (ABM) is a powerful tool for the study of CAS (Axelrod 1997; 

Wilensky and Rand, 2015; He et al., 2016). ABM can capture phenomena in CAS by simulating 
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how each individual (i.e., agent) makes decisions based on its interactions with the environment 

and other agents (Wu et al., 2013). Agents can also adapt and evolve (He et al., 2015). Pathak et 

al. (2007) and Nair and Vidal (2011) discuss how interconnected entities may adapt in response to 

a change in the system. This adaptation could lead to a restructuring of the network. Following 

this logic, we develop an agent-based model to study a supply chain network as a CAS. 

Specifically, the model simulates how firms respond to disruptions via reactive behaviors and how 

the impact of disruptions propagates in large-scale supply chain networks. In our ABM, each 

firm/node is represented as an autonomous agent. In reality, a firm whose supplier ceases to operate 

may not simply wait for the supplier to recover. Instead, the firm will try to find alternative sources 

of supplies and could request new connections with one of these alternative suppliers in order to 

resume its own normal operations. When receiving such requests to build new connections, these 

alternative suppliers will also decide whether to accept such requests. 

Therefore, the first key component of our ABM is to model firms’ adaptive behaviors when 

facing disruptions in the supply chain network  by leveraging the competition network 𝐺𝑠(𝑉, 𝐸𝑠) 𝐺𝑝

 among firms, where  is the set of all firms, and  and  are sets of edges in the two (𝑉, 𝐸𝑝) 𝑉 𝐸𝑠 𝐸𝑝

networks respectively. In other words, this adaptive strategy of network restructuring is reactive, 

as it occurs in response to a first-tier supplier failure. To implement this strategy, each run of our 

ABM consists of multiple iterations of inter-agent interactions, and each iteration has two steps: 

Step 1 and Step 2. Assume an initial disruption occurs at agent  and forces it to cease operations 𝑣𝑖

(i.e., removing  from , and its edges from  and ) at time t. After that initial disruption, time 𝑣𝑖 𝑉 𝐸𝑠 𝐸𝑝

ticks t+odd_number (e.g., t+1, t+3, t+5,…) in our model are for customers of  to find and send 𝑣𝑖

requests to alternative suppliers (described in Step 1.1 and Step 1.2), and time ticks t+even_number 
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(e.g., t+2, t+4, t+6…) are for alternative suppliers to decide which requests to accept (described 

in Step 2). 

Another key component of our ABM is to model how the impact of a disruption propagates 

in a supply chain network. Our modeling of such propagations was based on agents’ reactive 

behaviors in seeking alternative suppliers. If an agent, who needs to find an alternative supplier 

due to the failure of one of its original suppliers, cannot secure one such supplier, then the agent’s 

operation will be disrupted, and may even cease all of its operations with certain probabilities. If 

the agent does stop operating due to the lack of alternative suppliers, then it will be removed from 

the supply chain network and as a result, all its customers will need to seek alternative suppliers 

(described in Step 1.3). Such consecutive removal of nodes from the supply chain network after 

the initial node removal will constitute cascading failures, and model the propagation of 

disruptions across the whole supply chain network.

The complete model is specified as follows (Appendix 2 lists pseudo-code of the model). 

After the initial node removal (Step 0), the model includes two major components: firms seeking 

alternative suppliers and send requests (Step 1), and alternative suppliers deciding which requests 

to accept (Step 2).

Step 0: The Initial Node Removal. At the very beginning, the model will remove one firm from 

the supply chain network. Edges attached to the node are also removed. Users of our model 

can decide which node is removed initially. Such a single node removal at the beginning may 

cause cascading failures of other nodes later.

Step 1: Seeking Alternative Suppliers. After the removal of a node  from  (it could be the 𝑣𝑖 𝐺𝑠

initially removed node, or a node removed by cascading failures), each customer of  (denoted 𝑣𝑖

as , where  ) will try to find alternative suppliers in the following way:𝑣𝑚 ∈ 𝐶𝑖 ∃𝑒𝑖,𝑚 ∈ 𝐸𝑆
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Step 1.1. Identify potential alternative suppliers.  considers all direct competitors of  𝑣𝑚 𝑣𝑖

from  (denoted as , where ) as its list of candidates. Each agent  in 𝐺𝑝 𝑣𝑛 ∈ 𝑃𝑖 ∃𝑒′𝑖,𝑛 ∈ 𝐸𝑃 𝑣𝑛

the candidate list of  will be approached by  with probability , where 𝑣𝑚 𝑣𝑚 𝑝𝑛,𝑚 =
𝑘 ∗ 𝑤𝑖,𝑛
∑
𝑃𝑖
𝑘 ∗ 𝑤𝑖,𝑛

 is the edge weight between  and  in the competition network . Recall that edge 𝑤𝑖,𝑛 𝑣𝑖 𝑣𝑖,𝑛 𝐺𝑝

weight between two firms in the competition network represents the two firms’ overlap in 

products. The definition of  reflects the intuition that a competitor that is more similar 𝑝𝑛,𝑚

to  in terms of products is more likely to provide what  supplies to its customers 𝑣𝑖 𝑣𝑖

previously.  is a weighting factor to give higher preference to existing partners (customers 𝑘

or suppliers). The preference for and benefits of using existing suppliers is well 

documented in the literature, including potential liabilities and risk exposure in using new 

and unproven partners where capabilities and trust have not been established (Dyer and 

Singh, 1998; Wagner and Friedl, 2007), “switching inertia” in using new suppliers (Li et 

al., 2006), and the ability to leverage specific assets of the relationship (Dwyer et al., 1987; 

Azadegan et al. 2011). In fact, some literature has noted the “liability of newness” can 

make ventures susceptible to risk events (Azadegan et al., 2013). 

In our model, if  or , we try two different ways to sample the ∃𝑒𝑚,𝑛 ∈ 𝐸𝑆 ∃𝑒𝑛,𝑚 ∈ 𝐸𝑆

value of : (1) , a normal distribution with a mean of 1.5 and a standard 𝑘 𝑘~𝑁(1.5, 0.1)

deviation of 0.1 with a minimum of 1; (2) , a normal distribution with a 𝑘~𝑁(1.5, 0.2)

mean of 1.5 and a standard deviation of 0.2 with a minimum of 1. Otherwise, k is set to 1 

for non-partners.

Step 1.2. Stop approaching alternative suppliers. If an alternative supplier approached by 

 does not accept its request, then  will remove that supplier from its candidate list and 𝑣𝑚 𝑣𝑚
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decide which one to approach in subsequent trials by recalculating  for each remaining 𝑝𝑛,𝑚

candidate.  will approach one alternative supplier at each time tick for Step 1 (t+1, t+3, 𝑣𝑚

t+5, ….) and will stop approaching alternative suppliers when any one of the three 

following conditions is met: 

(1) A request for an alternative supplier is accepted. 

(2) It has reached the maximum number of trials allowed for an agent but has not 

secured an alternative supplier. The maximum number of trials is set to 10 (i.e., one 

iteration of a simulation will stop after t+20)3. 

(3)  already exhausts all of its alternative supplier candidates (e.g.,  only has 5 𝑣𝑚 𝑣𝑖

competitors) before reaching its maximum number of trials. 

If the 2nd or the 3rd condition is met, that means  cannot secure an accepted 𝑣𝑚

request from an alternative supplier by the end of the iteration, and  will be marked as 𝑣𝑚

“disrupted”. 

Step 1.3. Possible cascading failures. To simulate cascading failures, we remove a 

“disrupted” agent  from the network with mean probability of , which depends on two 𝑣𝑖 𝑃𝑅𝑖

factors about . 𝑣𝑖

First,  is proportional to the percentage of lost suppliers. A lost supplier for  𝑃𝑅𝑖 𝑣𝑖

refers to a supplier that meets both of the following conditions: (1) it has ceased operation 

and been removed from the supply chain network; and (2)  cannot find an alternative 𝑣𝑖

3 The degree distribution of the competition network is highly skewed. Only 10% of the firms in the 
network have more than 10 competitors. In other words, it is unlikely for a firm to have more than 10 
alternative suppliers. Meanwhile, simulation data also shows that the conditional probability that a firm’s 
seeking of alternative suppliers was stopped because of the threshold of 10 trials given that the firm needs 
an alternative supplier is below 0.03%. Thus, we believe that increasing this threshold will have minimal 
impact on simulation results.
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supplier to replace the removed suppliers after going through Step 1.1 and Step 1.2. The 

percentage of lost suppliers refers to the ratio between a firm’s number of lost suppliers 

and the firm’s number of original suppliers prior to disruptions. For example, a firm that 

has 10 original suppliers but loses 1 supplier will have 10% of lost suppliers. The idea 

behind this factor is that the more suppliers a firm loses, the more likely this firm will fail 

to operate. For instance, all other things being equal, a firm that has lost 60% of its suppliers 

is more likely to fail than another one that lost only 10% of its suppliers. This is supported 

by supply chain risk research such as Trkman and McCormack (2009) who note that 

supplier failure is a key driver of risk in the supply chain where the loss of a supplier 

increases the riskiness to the firm. 

Second,  is inversely proportional to the firm size of . In addition to the status 𝑃𝑅𝑖 𝑣𝑖

of a node’s neighbors, as in the first condition, the size of a company also matters in 

cascading failures – other things being equal, larger firms are less likely to cease operations 

while smaller firms are more likely to fail due to limited resources and relationships 

(Azadegan et al., 2013). 

Specifically, , the mean probability that  is removed, is a function of agent  𝑃𝑅𝑖 𝑣𝑖 𝑣𝑖

’s size and percentage of lost suppliers. It is defined in Equation 1, where 𝑍𝑖 = log(𝑅𝑒𝑣𝑒𝑛𝑢

 is the size of , and  represent the percentage of lost suppliers for agent . According 𝑒𝑖) 𝑣𝑖 𝐿𝑖 𝑣𝑖

to this formula, if all the suppliers of a firm are lost ( ), then a firm will be removed 𝐿𝑖 = 1

from the network with a mean probability of 1. As for firm sizes, the biggest firm serves 

as the baseline and does not get any size-based discount on its ability to survive. 

Meanwhile, the smallest firm would still have a non-zero probability to survive as long as 

it does not lose all the suppliers. Given the same , the probability is linearly and inversely 𝐿𝑖
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proportional to firm size . This logic is supported in the literature, where the size of the 𝑍𝑖

firm had been shown to be an advantage in managing risk and disruptions.  For example, 

Chopra and Sodhi (2014) state that large firms have the ability to build resilience relatively 

inexpensively to better manage supply chain disruptions. Related to this in a supply chain 

security context, Park et al. (2016, pg. 126) found that larger firms are better able to handle 

security and safety issues due to “greater affordability for needed resource commitments”. 

Finally, Azadegan et al. (2013) note that in comparison, larger and older firms are better at 

managing risk and are less susceptible to damage from disruptions than newer and small 

firms in a new venture context.

(Equation 1)𝑃𝑅𝑖 = { 0,                                                                  𝑖𝑓 𝐿𝑖 = 0
1―

𝑍𝑖 ―min (𝑍) + 1
max (𝑍)―min (𝑍) + 1 × (1― 𝐿𝑖),        𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒           

Because  represents the mean probability that  is removed, we also add some 𝑃𝑅𝑖 𝑣𝑖

variations to such a mean value. To ensure the robustness of our simulation results, we 

tried to randomly sample the value of node removal from two distributions with  as the 𝑃𝑅𝑖

mean: the first one is a normal distribution  with a standard deviation of 0.1; the 𝑁(𝑃𝑅𝑖 , 0.1)

second one is a uniform distribution . Both distributions are 𝑈𝑛𝑖𝑓(𝑃𝑅𝑖 ―0.1, 𝑃𝑅𝑖 +0.1)

truncated to make sure values sampled from them are in the range of [0,1].

Note that cascading failures may cause an agent to have more than one of its 

original suppliers removed. In this case, the agent will need to identify an alternative 

supplier for each of its original suppliers that are removed. Also, if a disrupted node is not 

removed in one iteration, it may still be removed in a subsequent iteration with a mean 

probability of , although its  may increase if it continues to lose suppliers.𝑃𝑅𝑖 𝑃𝑅𝑖
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Step 2: Decisions by Alternative Suppliers. After receiving new requests from  to provide 𝑣𝑚

supplies, alternative supplier  needs to decide whether to accept new requests, and if so, which 𝑣𝑛

one(s) to accept. Note that there is an upper limit ( ) on how many new requests each agent  𝑈𝑘 𝑘

can accept. The limit is proportional to the agent’s firm size (represented by revenue) because we 

assume that larger firms are often able to accommodate more requests as they have more resources 

to review and accommodate requests. 

Specifically, we evaluate two different ways to sample . The first way is to divide all 𝑈𝑘

firms in our study into three categories based on their revenues, and sample  from three different 𝑈𝑘

normal distributions. Small firms are those whose revenues rank in the bottom 1/3 of all firms; 

large firms have revenues that rank within the top 1/3 among all; and the rest are medium firms. 

For small firms, , where  represents a normal distribution with a mean of 𝑈𝑘~𝑁(2, 0.5) 𝑁(2, 0.5)

2 and a standard deviation of 0.5; for medium firms ; for large firms . The 𝑈𝑘~𝑁(4,1) 𝑈𝑘~𝑁(6,2)

actual values of  are rounded to the nearest integer with a minimum value of 0. The second way 𝑈𝑘

is to sample  from one discrete uniform distribution , where  is the integer 𝑈𝑘 𝑈𝑛𝑖𝑓(
𝑍′𝑖
2 ―2,

𝑍′𝑖
2 +2) 𝑍′𝑖

closest to . Such a distribution ensures that the smallest company would still 𝑍𝑖 = log(𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑖)

have certain probabilities of offering extra capacities.

Once an agent has exhausted its capacity (i.e., reached its ), it will not accept any new 𝑈𝑘

request. If an agent loses a customer, who is removed from the network due to disruptions, then 

the agent can accommodate one more supply request beyond its original . It is also worth noting 𝑈𝑘

that this upper limit of accepting requests for each agent is set at the beginning of a simulation run. 

In other words, for a given agent, its  will stay the same for one simulation run but may vary 𝑈𝑘

from one run to another. 
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If at any given time t+t’ (after the initial node removal at t),  has not reached its upper 𝑣𝑛

limit , it will accept new requests. If there is only one request to , then  accepts it. If there 𝑈𝑛 𝑣𝑛 𝑣𝑛

is more than one request received by , it creates a list of candidate requesters and decide which 𝑣𝑛

one(s) to accept based on the following rules:

Step 2.1. Preference to requests from existing partners. Among agents on the list,  will 𝑣𝑛

first consider requests from those who are already connected with  (either as a supplier 𝑣𝑛

or a customer). This assumption is similar to the one about picking alternative suppliers-- 

existing partners are more attractive than new partnership. If there are multiple such 

requesters, then the probability for  to pick an existing neighbor   would be 𝑣𝑛 𝑣𝑚

proportional to the product of the requester’s firm size (following logic from Azadegan et 

al., 2013; Chopra and Sodhi, 2014; Park et al., 2016) and the similarity between  and the 𝑣𝑛

supplier  is trying to replace.𝑣𝑚

Step 2.2. Preference to requests from larger firms. If  has not reached its upper limit 𝑣𝑖,𝑛

after accepting requests from existing network neighbors at t+t’, it will try to accommodate 

requests from non-network-neighbors. Similar to Step 2.1, if there are multiple such 

requesters, then the probability for  to pick a new customer  would be proportional to 𝑣𝑛 𝑣𝑚

the product of ’s firm size and the similarity between  and the supplier  is trying to 𝑣𝑚 𝑣𝑛 𝑣𝑚

replace. If a request from a non-partner is accepted, a new edge will be added between  𝑣𝑛

and  in the supply chain network.𝑣𝑚

After each iteration of a simulation run, our model checks if any agent(s) was removed 

from the network due to cascading failures during the iteration. The model will repeat Steps 1 and 

2 for customers of newly removed agent(s) in a new iteration of the same simulation (all candidate 

lists and request lists will be cleared for the new iteration). When receiving a new request, those 



24

who have reached their upper limit  in previous iterations will no longer accept it, until a new 𝑈𝑘

opening becomes available after one of their customers gets removed. A simulation will stop when 

the simulation has finished its 13th iteration. 13 is the diameter of the supply chain network. 

Therefore, 13 iterations should be long enough in most simulations to spread the effect of the initial 

disruption to all nodes in the network4. 

In all, we try two different settings for each of the three parameters in the model: the 

preference to existing partners when approaching alternative suppliers, the probability to remove 

a node from the supply network, and the extra capacity for a firm to accept new requests. That 

leads to 23=8 different settings for our simulation (listed in Table 3). 

5. Results 

The ABM is developed using Python and simulations are run on a high-performance 

computing cluster with each of the 8 settings in Table 3 for the following analyses: (1) showing 

the impact of disruptions with and without adopting reactive strategies, (2) evaluating the 

effectiveness of proactive strategies for firms to improve their resilience against an ongoing distant 

disruptions, and (3) analyzing factors related to the performance of proactive strategies. In each 

simulation, we simulate the impact of one node removal (i.e., the initial disruption), although more 

nodes may be removed due to cascading failures.

5.1. The impact of high and low-degree disruptions.

This set of experiments compares the effects of disruptions to high-degree and low-degree 

firms by simulating the removal of high or low total degree nodes from the supply chain network. 

4 Simulation results also show that most of the disruptions occur during the first four iterations. 
After the 13th iteration, the number of newly disrupted firms only increases by less than 2% for 
high-degree initial disruptions. Thus we believe that extending the maximum value of iterations 
beyond 13 will have minimal impact on the simulation results.
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Specifically, we rank each node based on their degrees in a descending order. Those ranked within 

top 10% nodes are considered as high degree nodes (with degrees ranging from 15 to 312), whereas 

the low-degree nodes are those with degree 1, 40% out of 2,971 firms in the network. For each 

simulation setting in Table 3 and each type of node removal (i.e., high and low degree), repetitive 

simulations are conducted 1,000 times. Overall, we run 8*2*1000=16,000 simulations for this 

experiment.

Table 3. Different simulation settings.

Setting
Preference to existing 
partners as alternative 
suppliers

Extra capacity a firm can 
accommodate

The probability of 
removing a disrupted node. 

1 k~N(1.5, 0.1) Normal distribution 
based on firm size. 𝑁(𝑃𝑅𝑖 ,0.1)

2 k~N(1.5, 0.1) Normal distribution 
based on firm size. 𝑈𝑛𝑖𝑓(𝑃𝑅𝑖 ― 0.1, 𝑃𝑅𝑖 + 0.1)

3 k~N(1.5, 0.1) 𝑈𝑛𝑖𝑓(
𝑍′𝑖
2 ― 2,

𝑍′𝑖
2 + 2) 𝑁(𝑃𝑅𝑖 ,0.1)

4 k~N(1.5, 0.1) 𝑈𝑛𝑖𝑓(
𝑍′𝑖
2 ― 2,

𝑍′𝑖
2 + 2) 𝑈𝑛𝑖𝑓(𝑃𝑅𝑖 ― 0.1, 𝑃𝑅𝑖 + 0.1)

5 k~N(1.5, 0.2) Normal distribution 
based on firm size. 𝑁(𝑃𝑅𝑖 ,0.1)

6 k~N(1.5, 0.2) Normal distribution 
based on firm size. 𝑈𝑛𝑖𝑓(𝑃𝑅𝑖 ― 0.1, 𝑃𝑅𝑖 + 0.1)

7 k~N(1.5, 0.2) 𝑈𝑛𝑖𝑓(
𝑍′𝑖
2 ― 2,

𝑍′𝑖
2 + 2) 𝑁(𝑃𝑅𝑖 ,0.1)

8 k~N(1.5, 0.2) 𝑈𝑛𝑖𝑓(
𝑍′𝑖
2 ― 2,

𝑍′𝑖
2 + 2) 𝑈𝑛𝑖𝑓(𝑃𝑅𝑖 ― 0.1, 𝑃𝑅𝑖 + 0.1)

As mentioned earlier, after an initial node removal, other nodes can be in one of the 

following states at a given time: undisrupted, disrupted, and removed. Undisrupted nodes operate 

as usual, although they may have to request alternative suppliers or accept new customers. 

Undisrupted nodes become disrupted when they fail to secure alternative suppliers to replace 

original suppliers that are removed from the network. A disrupted firm can be removed from the 
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network with a probability that takes into consideration both the size of the firm and the percentage 

of lost suppliers (as described in Step 1.3 and Equation 1). We measure the impact of an initial 

disruption by the total number of disrupted firms, because the operations of these firms are 

negatively affected by the disruption. While the number of removed firms can also indicate the 

severity of a disruption, the removal of a firm indicates the cease of operation for the whole 

company, which is rare in reality.

Figure 5 (top) shows that an initial node removal can indeed disrupt multiple other firms. 

As we would expect, high-degree node removal in such a network with highly skewed degree 

distributions cause more firms to be disrupted and are more damaging to the whole network than 

low-degree node removals. Simulation results are consistent no matter which simulation setting is 

used: Pearson correlation coefficients among the average numbers of disrupted firms from 

simulations with the 8 different settings for simulations range from 0.86 to 1.00 (all with p-

value<0.001). 

As a comparison, we also showed results from another set of 16,000 simulations, which 

have the same settings, except that agents in this new set of simulations will not adapt to a 

disruption by reactively connecting to alternative suppliers (results in Figure 5 bottom). 

Specifically, the new sets of simulations ignore Step 1.1, Step 1.2 and Step 2 in our original ABM, 

and only keep the consecutive removal of nodes to model cascading failures. Comparing 

simulation results where agents have reactive behaviors versus not, we can see that ignoring 

agent’s adaptive behaviors from the model greatly increases the impact of the initial disruption. 

With a reactive strategy, the maximum numbers of disrupted firms are lower than 30, whereas the 

minimum numbers of disrupted firms after an initial high-degree node removal are higher than 

1,400 without a reactive strategy. In other words, the inclusion of an agent’s reactive strategy in 
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face of disruptions into our ABM plays an important role in reducing the negative impact of supply 

chain disruptions. Without considering such adaptive behaviors, many previous studies of complex 

network resilience may have over-estimated the negative impact of a disruption.

Figure 5. Total numbers of disrupted firms in the supply chain. Results for high and low 
degree node removal with 8 different simulation settings.

5.2. Proactive strategies after distant disruptions.

Although our ABM incorporates firms’ adaptive behaviors in seeking alternative suppliers 

when their original suppliers fail, a reactive strategy only occurs when a firm is forced to deal with 

the impact of a failed tier-1 supplier. In many cases, a firm may want to be more proactive in 

preparing for the impact of a disruption at a distant firm in the supply network (i.e., at least two 

hops away) and even before any of its immediate suppliers fails. Intuitively, more proactive 

identifications of which supplier is the riskiest spot given a distant disruption allows a focal firm 
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to prepare an alternative supplier to the riskiest spot. By doing so, the focal firm gains two 

advantages: First, it faces less competition for alternative suppliers with other firms that only react 

to the failure of a direct supplier. Second, because such proactive behavior occurs before the distant 

disruption actually hits the focal firm, it has more time to streamline supplies from the alternative 

supplier than when it only adopts the reactive strategy after a direct supplier has failed.

Therefore, we propose and compare two proactive strategies for a firm to reduce its supply 

network risk after a distant disruption is observed. Using 181 firms from 4 sectors5 (referred to as 

the focal firm ), we simulate the removal of high-degree distant firms that are at least 2 hops 𝑣𝑓

away from and compare the probabilities that they are disrupted with and without using  𝑣𝑓 

proactive strategies. 

Based on which distant firm is removed, our proactive strategies identify the riskiest spot 

among the focal firm’s suppliers corresponding to the distant removal. Then the proactive 

strategies add a new supplier as a backup or alternative for the riskiest spot. The first proactive 

strategy we propose (S1) identifies riskiest spots based on simulation results. Given a focal firm 

, for each high-degree firms that are at least two hops away from the focal firm, we remove the 𝑣𝑓

high-degree firm, and observe if the initial node removal will eventually disrupt  in 100 𝑣𝑓

simulations. If  is disrupted, it must have one or more suppliers that are removed during the 𝑣𝑓

propagation of the impact from the initial removal. With the simulation results, for each pair of 

focal firm  and the removal of distant node , we can obtain a Disruption Causing Probability 𝑣𝑓 𝑣𝑟

(DCP) distribution over the suppliers of : , where  is the set of 𝑣𝑓 < 𝑝𝑟𝑓,1,𝑝𝑟𝑓,2,…,𝑝𝑟𝑓,𝑖,…, 𝑝𝑟𝑓,|𝑆𝑓| > 𝑆𝑓

tier-1 suppliers for , and  represents the probability that the initial removal of distant node  𝑣𝑓 𝑝𝑟𝑓,𝑖 𝑣𝑟

5 The four sectors are Computer Hardware & Equipment, Aerospace, Beverage and Food, and Retail 
(general retail and specialty retail). The four sectors are the most represented among top 27 firms in 
Gartner’s supply chain performance ranking in 2015 (Gartner, 2015).
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will disrupt  by removing . Then naturally, supplier  with 𝑣𝑓 𝑣𝑖 ∈ 𝑆𝑓  𝑣𝑤 𝑝𝑟𝑓,𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑖 ∈  𝑆𝑓(𝑝
𝑟
𝑓,1,

 is the riskiest spot among suppliers of   if  is removed. When more than one 𝑝𝑟𝑓,2,…, 𝑝𝑟𝑓,|𝑆𝑓|) 𝑣𝑓 𝑣𝑟

supplier has the same maximum DCP, strategy S1 randomly selects one of them as the riskiest 

spot. 

Proactive strategy S1 requires a large number of simulations to obtain DCP for each pair 

of focal firm and distant node removal. Therefore, we also propose a heuristic proactive strategy 

(S2) to help managers approximate the riskiest spots without running many simulations. S2 is 

developed based on a heuristic measure called Disruption Risk Score (DRS), which considers firm 

sizes and topologies of both the supply and competition networks. Specifically, once a distant node 

 is removed from the supply chain network, S2 will evaluate focal firm  suppliers  𝑣𝑟 𝑣𝑓′𝑠 𝑣𝑖 ∈  𝑆𝑓

based on their sizes, degrees in the competition network (i.e. the number of competitors), and 

Node-to-Node (N2N) betweenness in the supply chain network. Built on the concept of network 

betweenness, which measures the probability that a node appears on the shortest paths between all 

possible pairs of nodes, N2N betweenness of a node is the probability for the node to appear on 

shortest paths between two given nodes. Take Boeing as an example: the shortest path length from 

firm  to Boeing is 4, and there are 5 such paths with this length. Among Boeing’s Tier-1 suppliers, 𝐴

firm  is on 3 of the 5 shortest paths, and firm  is on 2. Then for Boeing and firm A, 𝐵 𝐶 𝑁2𝑁

 and . (A, Boeing, B) = 3/5 𝑁2𝑁(A,Boeing, 𝐶) = 2/5

Specifically, the DRS of a supplier  to focal firm  after the removal of distant 𝑣𝑖 ∈  𝑆𝑓 𝑣𝑓

node  is defined in Equation 2, where  is the set of ’s competitors in the competition network. 𝑣𝑟 𝑃𝑖 𝑣𝑖

 is ’s degree centrality in the competition network;  is the firm size of ; and |𝑃𝑖| 𝑣𝑖 𝑍𝑖 𝑣𝑖 𝑁2𝑁(𝑣𝑟,𝑣𝑓,

 is the Node-to-Node betweenness of  on paths from  to . The logic of using the DRS 𝑣𝑖) 𝑣𝑖 𝑣𝑟 𝑣𝑓

measure is that among a focal firm’s direct suppliers, those who have fewer competitors (i.e., lower 
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degree in the competition network), smaller sizes, and higher probabilities to be on the shortest 

path between the removed distant node to the focal firm (i.e., higher N2N betweenness in the 

supply network) are riskier for the focal firm. 

(Equation 2)𝐷𝑅𝑆𝑟𝑓,𝑖 =
𝑁2𝑁(𝑣𝑟,𝑣𝑓,𝑣𝑖)

|𝑃𝑖| × 𝑍𝑖 

After the removal of distant node , proactive strategy S2 identifies a firm   as the 𝑣𝑟 𝑣𝑤 ∈ 𝑆𝑓

riskiest spot for focal firm  when . Similar to S1, ties are broken 𝑣𝑓 𝑣𝑤 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑣𝑖 ∈  𝑆𝑓 𝐷𝑅𝑆
𝑟
𝑓,𝑖

randomly. In other words, riskier firms have higher probabilities to cause an impact to the focal 

firm, because (1) they have relatively fewer backup or replacement options, (2) they are more 

susceptible to disruptions due to their smaller sizes, and (3) they are more likely to spread the 

disruption to the focal firm. 

After finding the riskiest spot , both strategies randomly pick one of ’s competitors, 𝑣𝑤 𝑣𝑤

which is not a current Tier-1 supplier of the focal firm, , and add a directed link from 𝑣𝑘 ∈ 𝑃𝑤 ∩ 𝑆𝑓

 to the focal firm . If  has no competitors ( or all of its competitors are already the 𝑣𝑘 𝑣𝑓 𝑣𝑤 |𝑃𝑤| = 0) 

focal firm’s suppliers ( ), we exclude  from the candidate list and move to the 2nd riskiest 𝑃𝑤 ⊆ 𝑆𝑓 𝑣𝑤

spot. For both strategies, we simply add one new supplier for the focal firm right after a distant 

node removal is observed, assuming the new supplier will accept the request. We make such an 

assumption for two reasons: First, doing so can simplify the evaluation of proactive strategies. By 

contrast, allowing a new supplier to reject a proactive request will prolong the simulation and could 

lead to no new tie formed during proactive restructuring, which makes our evaluation difficult.  

Second, because such a connection is built by a focal firm proactively to avoid possible disruptions, 

the focal firm’s urgency for supplies is lower than in reactive strategies. Therefore, compared to 

handling urgent requests sent via reactive strategies, an alternative supplier has a higher probability 

to adjust its capacities to accommodate such a proactive request.
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To evaluate the two proactive strategies, we also add our original reactive strategy from 

our ABM (described in Section 4) as a baseline adaptive approach for comparison where the focal 

firm will passively wait till one of its tier-1 suppliers gets removed, and then try to find alternative 

supplier(s). In the experiments, we only simulate the removal of high-degree nodes, whose degrees 

rank within top 10% in the whole network, as removing these nodes is the most damaging. The 

removal is also limited to distant nodes that are at least two hops away from a focal firm, because 

proactive strategies take place when a focal firm’s tier-1 suppliers are not yet affected. After the 

initial removal of high-degree distant node, we compare the probabilities that focal firms get 

disrupted when no proactive strategy is used (baseline), proactive strategy S1 is used, and proactive 

strategy S2 is used. We run 500 simulations for each pair of distant high-degree node removal and 

focal firm.

Figure 6 uses a scatter plot to show the decrease in focal firms’ probabilities of being 

disrupted after using the two proactive strategies S1 and S2. A positive decrease means a proactive 

strategy helps to improve a focal firm’s resilience against high-degree distant node removals. 

Compared to the baseline with only reactive behaviors, proactive strategies can reduce the 

probabilities of disruptions for 150 (82.87%) of the 181 focal firms in our simulation. The 

maximum decrease is 0.36 for Inventec Corp with S2. 

Meanwhile, the performance of the two strategies is highly correlated (r=0.99, p-

value<0.0001), with S1 performing slightly better. For example, both strategies lead to similar 

average disruption probabilities: 3.3% for both S1 and S2, whereas such probability is 7.8% on 

average without proactive strategies. Besides 12 firms where both strategies have the same 

performance, S1 outperforms S2 for 90 focal firms, while S2 performs better than S1 for 79 focal 

firms. At the same time, the performance of S2 compared to S1 also illustrates the effectiveness 
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of our heuristic measure DRS for riskiest spot identifications without running a large number of 

simulations.

Figure 6. Decrease in focal firms’ disruption probabilities for 181 focal firms with 
proactive strategies S1 and S2.

5.3. Factors impacting the effectiveness of proactive strategies

As Figure 6 shows, the effectiveness of proactive strategies varies from one focal firm to 

another. A better understanding of which factors make such strategies more or less effective can 

help a firm better decide if it should adopt proactive strategies. Therefore, we hypothesize two 

factors that can influence the effectiveness of proactive strategies for a focal firm and run OLS 

regressions to evaluate the impact of these factors. Because the two proactive strategies have very 

similar performance with S1 slightly outperforming S2, our analysis on the effectiveness of 

proactive strategies focuses on S1. 
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5.3.1. Unevenness of Risk among Suppliers in the Supply Chain Network

With proactive strategy S1, we can obtain the distribution of average risk from all suppliers 

to a focal firm by averaging a focal firm’s DCP for each distant node removal. We hypothesize 

that the more even the risk distribution is, the less effective a proactive strategy becomes. This is 

because a more uneven risk distribution means some suppliers are much riskier than others for the 

focal firm, which can then use proactive strategies to address such vulnerability. This indeed 

reflects the reality of today’s supply chain networks where some suppliers are riskier partners or 

more likely to cause a disruption. Each supplier has characteristics or dynamic factors that impact 

riskiness or resilience to disruptions (Blackhurst et al., 2011; Ho et al., 2015). This results in 

different suppliers having different levels of risk to a focal firm. Hence, risk exposure is uneven 

across the network. In fact, recent research has noted the lack of research monitoring and 

understanding supplier risk levels and its impact on the network (Ho et al., 2015).  

We will use two extreme examples to illustrate the idea behind this hypothesis related to 

the unevenness of risk amongst supplier. When the risk distribution follows a uniform distribution, 

every supplier shares the same probabilities of disrupting the focal firm, but a proactive approach 

is limited to taking care of one of these firms. On the other end of the spectrum, if the risk 

distribution follows a Dirac Delta Distribution with one firm having a probability of 1 and the 

others being 0, it is obvious which supplier is the riskiest spot. After a proactive approach handles 

the riskiest spot, other suppliers have no chance to disrupt the focal firm anymore. To measure the 

unevenness of the risk distribution, we calculate Gini coefficients (Gini, 1912) of the average DCP 

distribution for S1. Higher Gini coefficients mean more unevenly distributed risk among a focal 

firm’s suppliers.  Therefore, we hypothesize: 

H1: In the presence of a remote supply chain disruption, the effectiveness of a proactive 
strategy is positively associated with the unevenness of risk among a focal firm’s suppliers. 
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In our models, the baseline disruption probability (BDP) is the probability of a focal firm 

being disrupted in our baseline setting without using a proactive strategy. Intuitively, such a 

probability will impact the effectiveness of a proactive strategy. In other words, a focal firm 

starting with a higher risk of disruption can benefit more from being proactive in approaching 

others, while a proactive strategy will not help as much when a focal firm already has lower 

disruption probabilities.  Therefore, we also hypothesize:

H1a: The positive effect of risk unevenness on the effectiveness of proactive strategies is 
moderated by BDP.

We contend that when BDP is higher, the positive effect of risk unevenness becomes 

stronger. This is because when a focal firm is more susceptible to remote disruptions, the overall 

risk caused by the focal firm’s suppliers is higher. Meanwhile, given the same unevenly distributed 

DCP, with a higher overall risk of disruptions, the potential risk from the riskiest spot of the focal 

firm will increase. Therefore, proactive strategies can be more effective after finding an alternative 

to the riskiest spot.

5.3.2. Multi-Sourcing Ratio among Suppliers in the Supply Chain Network

A common practice for a firm to improve its supply chain network resilience against 

disruptions is to add back-up suppliers by procuring the same product from more than one supplier 

(Sawik, 2014a; Sawik, 2014b). Multi-sourcing approach can also be leveraged to maintain 

competitiveness amongst suppliers (Heese, 2015). We have seen an increasing use of competing 

suppliers in a multi-sourcing strategy in real world supply chains. For example, Apple sources 

displays from multiple suppliers which maintains competitiveness between suppliers and reduce 

the risk of supply disruptions (Li and Debo, 2009; Hu et al., 2017). In this paper, we measure the 

level of multi-sourcing (using the supply chain network and its corresponding competition 

network) with a new network-based measure called multi-sourcing ratio (MR). To calculate MR, 
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we examine all suppliers of a focal firm, and find the percentage of suppliers that also compete 

with another supplier of the same focal firm. A higher ratio means a higher level of multi-sourcing 

for a focal firm and more competition amongst its suppliers. For example, firm A has 4 suppliers 

B, C, D, and E. Among the 4 suppliers, B competes with C (where B and C are multiple sources 

to the focal firm A and they are connected in the competition network), and C competes with E. 

Then the MR for firm A is 75%, because 3 out of 4 suppliers for A have competitor(s) among A’s 

suppliers. 

If a focal firm has a supplier and the competitors of that supplier are also already serving 

the focal firm (in a multi sourcing situation), then the proactive strategy will be less effective. This 

is because the proactive strategy works in the following way: for the riskiest supplier of a focal 

firm (depending on which remote firm is disrupted), proactive strategies pick one firm from the 

riskiest supplier’s competitors and add the firm as a supplier. If a competitor of the riskiest supplier 

is already a supplier of a focal firm, then adding another competitor of the riskiest supplier as a 

supplier becomes redundant.

Back to the example of Apple’s display suppliers. Assume A is a display supplier for Apple 

and is identified as the riskiest spot after a remote disruption. If Apple only uses supplier A as its 

display supplier, then adding supplier B (which is a competitor to supplier A) as another supplier 

(multi-sourcing) during proactive restructuring can be effective. However, if Apple is already 

buying displays from both supplier A and supplier B, Apple already has a back-up supplier in place 

in the event of supplier A failing. In this case, adding another display manufacturer C using 

proactive strategies may still help, but the improvement will be less than in the case where there 

was no backup supplier in place. Essentially, when a focal firm has no backup to its riskiest 

supplier, proactive strategies help more. If a focal firm already has backup to its riskiest supplier 
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(via multi-sourcing), then adding another backup via proactive strategies is less effective. 

Therefore, we hypothesize:

H2: In the presence of a remote supply chain disruption, the effectiveness of a proactive 
strategy is negatively associated with a focal firm’s multi-sourcing ratio.

5.3.3. Models and results

To test our hypotheses, we run a multiple regression model on simulation results of 

proactive strategy S1 for the 181 firms in Section 5.2. The dependent variable (DV), is ∆𝐷𝑖𝑠𝑃𝑟𝑜𝑏, 

the decrease in focal firm’s disruption probability after restructuring with strategy S1, compared 

to baseline with no proactive restructuring. In other words, the DV shows how much the disruption 

probability decreases after a focal firm uses proactive strategy S1. 

As for covariates, control variables include a focal firm’s sector (3 dummy variables for 4 

sectors), its out-degree centrality in the supply chain network6 (i.e., number of customers, 

OutDgrSupply), its degree centrality in the competition network (i.e., number of competitors, 

DgrComp), and its BDP. The two independent variables are (1) the focal firm’s Gini coefficient 

of average DCP (Risk_Gini), and (2) the focal firm’s multi-sourcing ratio (MR). We also added an 

interaction term of Risk_Gini*BDP to test Hypothesis 1a. The full model is specified in Equation 

3. There is no strong correlation between any pair of covariates (Figure 7). Because this is a linear 

regression model, we tested assumptions for such a model and included results in Appendix 3. 

Note that all covariates except dummies for sectors are log-transformed to address assumptions of 

linear regression models.

∆𝐷𝑖𝑠𝑃𝑟𝑜𝑏𝑖 = 𝛽0 + 𝛽1 ∗ 𝑆𝑒𝑐𝑡𝑜𝑟𝑖 + 𝛽2 ∗ 𝑂𝑢𝑡𝐷𝑔𝑟𝑆𝑢𝑝𝑝𝑙𝑦𝑖 + 𝛽3 ∗ 𝐷𝑔𝑟𝐶𝑜𝑚𝑝𝑖 + 𝛽4 ∗ 𝐵𝐷𝑃𝑖 + 𝛽5 ∗
        (Equation 3)𝑅𝑖𝑠𝑘𝐺𝑖𝑛𝑖𝑖 + 𝛽6 ∗ 𝑀𝑅𝑖 + 𝛽7 ∗ 𝑅𝑖𝑠𝑘𝐺𝑖𝑛𝑖𝑖 ∗ 𝐵𝐷𝑃𝑖 + 𝜖𝑖,  𝑖= 1,2,…,181.

6 In-degree centrality in the supply chain network is not included, because it is highly correlated 
with many other covariates (e.g., 0.68 with MR and 0.65 with Risk.)
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Figure 7. Pair-wise Pearson correlation between covariates: 
∗ :𝐩< 𝟎.𝟎𝟓; ∗∗ :𝐩< 𝟎.𝟎𝟏; ∗∗∗ :𝐩< 𝟎.𝟎𝟎𝟏

Table 4 summarizes results of our regression models, each with a different set of covariates. 

Confidence intervals and statistical significance are based on robust standard errors (Arellano, 

1987). First, among control variables, only BDP is a significant predictor for the effectiveness of 

proactive strategies. As expected, its sign is consistently positive confirming that firms that suffer 

from higher disruption probabilities without proactive restructuring benefit more from the 

proactive strategy. Second, Hypotheses 1 and 2 are supported. Risk_Gini is a positive and 

significant predictor, while MR is a negative and significant predictor of the DV. In other words, 
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a firm with more unevenly distributed risk among its suppliers and a lower ratio of supply multi-

sourcing would benefit more from a proactive strategy. Last, Hypothesis 1a is also supported as 

the interaction term Gini_Risk*BDP has a positive and significant coefficient (Model 3).

Table 4. OLS regression model for the effectiveness of proactive strategy S1. 

Coefficient (Std. Err.)Variable

Model 1 Model 2 Model 3
Sector Retail -0.05 (0.18) -0.09 (0.20) -0.17 (0.21)
Sector Computer -0.05 (0.19) -0.03 (0.20) -0.12 (0.21)
Sector Food/Beverage 0.18 (0.23) 0.14 (0.25) 0.01 (0.26)
Supply Network Outdegree -0.02 (0.08) -0.02 (0.08) -0.03 (0.08)
Competition 
Network Degree -0.06 (0.07) -0.07 (0.07) -0.07 (0.06)

Control 
Variables

BDP 0.62*** (0.08) 0.58*** (0.09) 0.62*** (0.10)
Risk_Gini - 0.19* (0.08) 0.22* (0.09)
MR - -0.18** (0.06) -0.19** (0.06)Independent 

variables Risk_Gini*BDP - - 0.16* (0.08)
Adjusted 𝑅2 0.38 0.41 0.43

𝐹 11.38*** 10.28*** 13.98***
+:𝑝< 0.1;  ∗ :𝑝< 0.05;  ∗∗ :𝑝< 0.01;  ∗∗∗ :𝑝< 0.001

6. Discussion

In this section, we discuss implications for researchers and practitioners. Future research 

directions extending from this study as well as limitations are also presented. 

 6.1. Implications for Theory and Practice

This paper builds upon recent work analyzing supply chain networks as complex adaptive 

systems. We have developed a method to model and understand strategies for supply chain 

adaptation in the face of disruptions. Not only does recent research tell us that the network level 

implication of cascading disruption is difficult to understand (Fiksel et al., 2015), but there is a 

need to reconfigure and restructure supply chain networks in response to disruptions (Hearnshaw 

et al., 2013). In fact, the more that can be done to identify and “shore up” risky spots in the supply 
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chain, the better the supply chain performance (Blackhurst et al., 2018). As such, we have answer 

calls to build adaptive capabilities into a model for supply chain disruptions (Hearnshaw et al., 

2013; Kim et al., 2015; Van der Vegt et al., 2015) by leveraging inter-firm competition 

relationships. We model the supply chain network as a CAS (Choi et al., 2001; Nair et. al., 2009) 

and leverage the adaptive capabilities to reconfigure connections and structures (Anderson, 1999; 

Choi et al., 2001). From a CAS perspective, we can model both close and distant disruptions and 

examine strategies to mitigate their impacts. This is important as disruptions may occur outside of 

the direct purview of a focal firm and propagate to it with intensifying and devastating effects. Our 

approach of modeling supply chain networks as an agent-based system examines two types of 

strategies: reactive and proactive to determine how firms can leverage such adaptive strategies to 

improve their resilience against supply chain network disruptions. 

We present our results in three stages. First, we model and analyze the impact of disruptions 

on a real-world large-scale supply network and demonstrate the use and effectiveness of reactive 

strategies. Next, we develop and evaluate the effectiveness of proactive strategies for firms to 

improve their resilience against a distant disruption. Third, we analyze factors related to the 

performance of proactive strategies. Our results have implications to both managers and 

researchers alike. In our first stage, we measure the impact of reactive strategies where disruptions 

occurred at high-degree and low-degree nodes. Not surprisingly, but now empirically validated 

through this study, we show that high-degree node removal is more damaging to the supply 

network as compared to low-degree node removal. We also illustrate the spread of a supply 

disruption with and without a reactive strategy. A reactive strategy was shown to reduce the 

number of nodes impacted by almost 50-fold (from over 1,400 to less than 30). This provides a 
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baseline for our model and also demonstrates the importance of considering firms’ adaptive 

behaviors when evaluating a supply chain network’s performance against disruptions. 

However, based on recent calls in the research, such as Blackhurst et al. (2018), to focus 

more on proactively managing risk, we develop and model proactive strategies. Such strategies are 

used when a disruption occurs at a distant firm (beyond first tier) but has not yet impacted the focal 

firm. Proactive strategies identify the weakest spot specific to the disrupted distant firm in the 

network. A replacement supplier is identified from the competition network and the supply 

network is restructured in a proactive manner. The first proactive strategy (S1) requires a large 

number of simulations, while the second proactive strategy (S2) uses a heuristic approach to 

identify the riskiest spots in the supply network. We empirically model and validate the superiority 

of proactive strategies over reactive strategies. We illustrate that even though a disruption may not 

originate from a focal firm’s immediate neighbors, it can propagate to the focal firm (Kim et al., 

2015; Blackhurst et al., 2005). Our strategies demonstrate a way to mitigate the impact of these 

potential damaging disruptions and develop resilience to allow firms to continue adding value to 

customers as called for by Ambulkar et al. (2015). 

Next, in order to better understand factors impacting the effectiveness of proactive 

strategies, we ran regression analyses. We proposed that two factors specifically could affect the 

effectiveness of proactive strategies: the evenness of risk among suppliers of the focal firm and 

the ratio of multi-sourcing among suppliers of the focal firm. We find that with higher evenness 

of risk, proactive strategies become more effective. However, the more multi-sourcing exists in 

the supply base, proactive strategies become less effective. Such findings greatly improve the 

practical value of our proactive strategies because they can better inform managers on whether 

their firms should adopt the proactive strategy when a distant disruption occurs. This is important 
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for managers, because they are charged with the delicate balancing act of risk versus reward in the 

supply chain. The findings can also help managers address the question of where and how to invest 

valuable and limited resources (Chopra and Sodhi, 2004; Tomlin, 2006; Chopra and Sodhi, 2014). 

6.2. Directions for Future Research and Limitations

There are also many exciting possibilities to extend this research. For example, in our 

agent-based models, a firms’ decision-making strategies, especially how an alternative supplier 

decides which request to accept, can incorporate more factors, such as geographical proximity, 

contract negotiation, the competition relationship between the requester and the alternative 

supplier. The way we design alternative suppliers’ upper limit of accommodating new requests 

can be improved to be more realistic as well. In addition, this research may have interesting 

implications for supply base management policies. For example, Shao (2017) notes that a supplier 

may (on its own) subcontract out to competition in order to win a bid. In this case, the focal firm 

views the supplier as a single source but that supplier may be subcontracting out to other suppliers. 

In this case the multi-sourcing nature of the supply base in not controlled by the focal firm but 

rather a supplier. Such nuances would be interesting extensions. 

Also, our model focuses on how a disruption propagates from disrupted suppliers to their 

customers. However, losing a customer may negatively affect a supplier’s supply chain operation 

as well. Adding such upstream propagation to our model will be helpful to better capture the impact 

of disruptions.  In addition, a model that considers the recovery of a firm after it is removed from 

the supply chain network will be interesting, although our current model does not incorporate such 

recovery due to increased complexity. Comparing to removing one firm and examining how the 

disruption propagates, removing multiple firms simultaneously at the beginning of the simulation 

can also be valuable, because this can reflect to disruptions caused by disasters in a larger 
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geographical region or political/military turmoil in a country. Alternatively, we can also specify 

the type of disruptions for the initial node removal because disruptions caused by exogenous 

shocks, such as natural disasters and industry-wide decline, and endogenous processes, such as 

competitive dynamics, may affect other firms in the network in different ways. 

In terms of adaptive strategies, the reactive and proactive strategies we investigated in this 

paper restructure a focal firm’s network after a disruption occurs among the focal firm’s immediate 

suppliers or distant nodes respectively. It would be interesting to develop a preemptive strategy, 

which guides a focal firm to more strategically restructure its networks for possible disruptions in 

the future. Last but not least, analyzing how large-scale supply chain networks and the competition 

networks co-evolve over time would also be an interesting undertaking, because we may be able 

to identify major disruptions that actually happen, and track how firms react to these disruptions 

from real-world data over time. Such longitudinal data can potentially help us validate our model 

of firms’ adaptive behaviors. 

Finally, this study is not without limitations. First, our supply chain network model is 

constructed from Mergent Horizon. The data is verified to be accurate and enables us to build a 

large-scale multi-tier supply chain network along with a competition network that adds another 

layer of relationship among these firms. However, this dataset may not capture all the relationships 

and entities in the network. For example, Boeing’s customers include government agencies, which 

may also be customers to Microsoft and thus constitute hidden connections between Boeing and 

Microsoft. As we focus on firms only, government agencies are not included in our dataset, 

although a political or military event can disrupt such entities and may affect supply chain 

operations of Boeing and Microsoft. Also, our sampling of the dataset relies on snow-ball sampling 

starting from one seed node. This method helps to yield a multi-sector multi-country supply 
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networks, but it may also introduce bias as more connected firms are more likely to be sampled. 

We try another sample with 27 seed nodes and find that this sample yields a network similar to the 

one used in this study (see Appendix 1 for details). However, we still acknowledge that potential 

bias may exist in the supply network used in this study. Second, while our verified ABM is based 

on a decision-making logic that reflects our knowledge of real-world supply chain operations, it is 

extremely difficult to obtain empirical data on firms’ moves after supply chain disruptions to 

validate such a schema. That is also a common challenge for many ABMs, and we hope we can 

address this issue in the future. Third, our model focuses on firms’ short-term reactions to a 

disruption, because we remove a firm from the supply network and does not consider if and when 

the firm will come back to normal operations. To include med- or long-term reactions to a 

disruption, the model will have to incorporate a node availability check component, as well as how 

firms deal with alternative suppliers when their original suppliers resume normal operations. Last, 

when evaluating the effectiveness of different adaptive strategies, we do not consider the cost of 

adding new suppliers. Therefore, our adaptive strategies provide the best-case scenario. Firms need 

to consider costs of such strategies when deciding which alternative supplier(s) to approach. 
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Appendix 1. Comparison between two datasets and supply chain networks

This appendix compares the dataset (D1) and the supply chain network based on it (referred to as 𝐺𝑠
) used in the paper with another dataset (D2) and the supply chain network  based on D2.𝐺𝑠′

D1 was collected using Boeing as the seed firm. By contrast, D2 used 27 seed firms from various 
sectors. According to Gartner’s supply chain performance ranking in 2015 (Gartner, 2015), 25 of 
these 27 firms were ranked with in top 25, and the other two were named “supply chain masters”. 
The 27 firms are listed in Table A1-1. Note that Boeing is not one of the 27 firms. The collection 
of D2 followed the same procedure as D1. Both datasets were collected from the Mergent Horizon 
database.

Table A1-1. List of seed firms for D2. (“Supply chain masters” are marked 
with *)
Amazon.com The Coca-Cola Company Johnson & Johnson
McDonald's Starbucks L'Oréal
Unilever Wal-Mart Stores Cummins
Intel 3M Toyota Motor
Inditex PepsiCo Home Depot
Cisco Systems Seagate Technology Apple*
H&M Nestlé P&G*
Samsung Electronics Lenovo
Colgate-Palmolive Qualcomm
Nike Kimberly-Clark

Compared to the 2,791 firms in D1, D2 has 4,406 firms. However, the sector distributions (i.e., the 
percentage of firms from each sector) are very similar. The Pearson correlation coefficient between 
sector distributions in the two datasets is 0.88 (p-value<0.001). When we fit a linear regression 
between sector percentages from D2 vs sector percentages from D1, we got a fitted straight line 
with a slope of 0.86 and R-squared of 0.78. The results are statistically significant with a p-value 
< 0.001. This indicates a strong linear and positive relationship between the industry sector 
distributions in the two datasets.

Using dataset D2, we also built a supply chain network  using the same approach we built  𝐺𝑠′ 𝐺𝑠
with D1. Figure A1-1 shows the degree distribution  in log-log scale. Similar to , the degree 𝐺𝑠′ 𝐺𝑠
distribution is also best represented by a Truncated Power-law: log-likelihood ratios for pairwise 
comparisons between Power-law (PL), Truncated Power-law (Truncated PL), Exponential (EXP), 
and Log-Normal (LN) are 1.682 (p-value <0.1) for PL vs Truncated PL, 6.805 (p-value <0.001) 
for Truncated PL vs EXP, 3.194 (p-value <0.05) for Truncated PL vs LN, 6.388 (p-value <0.001) 
for PL vs. EXP, and 6.679 (p-value < 0.001) for LN vs. EXP.

 A1-2 compares the four network statistics of the two networks, namely network density, 𝑇𝑎𝑏𝑙𝑒
average path length, network diameter, and average clustering coefficient. First, the two networks 
share similar densities, even though  is much bigger. Second,  has slightly longer average 𝐺𝑠′ 𝐺𝑠′
shortest path length (a.k.a., characteristics path length), but lower clustering coefficient. This is 
expected for  that has more nodes, because for networks with power-law-like degree 𝐺𝑠′



distributions, characteristics path length scales with log(N)/log(log(N)), and clustering coefficient 
scales with log(N)/N, where N is the number of nodes (Thadakamalla, Raghavan, Kumara, & 
Albert, 2004).

All the comparisons above showed that dataset D1 and supply chain network  used in our study 𝐺𝑠
represent a reasonable sample of the Mergent database.

Figure A1-1. Degree distributions of the new supply network .𝑮𝒔′

Table A1-2. Network Statistics of  and ’𝑮𝑺 𝑮𝒔

DENSITY CHAR. PATH LEN. AVG. CLUSTERING COEF.

𝑮𝒔 0.001 4.704 0.057

𝑮𝒔′ 0.001 5.007 0.048

References: 
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Thadakamalla, H. P., Raghavan, U. N., Kumara, S., & Albert, R. (2004). Survivability of 
Multiagent-Based Supply Networks: A Topological Perspective. IEEE Intelligent 
Systems, 19, 24–31. https://doi.org/10.1109/MIS.2004.49



Appendix-2. Flow diagrams and pseudo code for the agent-based model 

Figure A2-1 shows the flow diagram of our agent-based model. Figure A2-2 summarizes agents’ 
behaviors in the model.

Figure A2-1. The flow diagram of the agent-based model.

Figure A2-2. A summary of agent behaviors in the model.



The following pseudocode summarizes the major steps of our simulation framework. 

VARIABLES :
•  --Supply chain network𝐺𝑠(𝑉, 𝐸𝑠)
•  --Competition network𝐺𝑝(𝑉, 𝐸𝑝)
• --A full set of firms (i.e. nodes)𝑉
• —A full set of edges in the supply chain network𝐸𝑠
• —A full set of edges in the competition network𝐸𝑝
• --A node in 𝑣𝑥 𝑉
• --A list of disrupted nodes𝑉𝑑
• --A list of nodes to be removed𝑉𝑟
• --A node in 𝑣𝑖 𝑉𝑖𝑡𝑒𝑟
• --Suppliers of  (preceding nodes in )𝑆𝑥 𝑣𝑥 𝐺𝑠
• --A node in 𝑠𝑥 𝑆𝑥
• --Customers of  (succeeding nodes in )𝐶𝑥 𝑣𝑥 𝐺𝑠
• --A node in 𝑣𝑚 𝐶𝑥
• --Competitors of  (neighbors in )𝑃𝑥 𝑣𝑥 𝐺𝑝
• --A node in 𝑣𝑛 𝑃𝑥
• --The upper limit of  to accept requests as alternative suppliers𝑈𝑥 𝑣𝑥
• --A list of lost suppliers of 𝐿𝑆𝑥 𝑣𝑥
• --A node in 𝑙𝑠𝑥 𝐿𝑆𝑥
• --The alternative supplier that node  sends request to𝑞𝑥 𝑣𝑥
• --A list of nodes that send requests to node  𝑅𝑒𝑞𝑥 𝑣𝑥
• --A node in 𝑟𝑒𝑞𝑥 𝑅𝑒𝑞𝑥
• --A list of nodes whose requests accepted by node 𝐴𝑐𝑐𝑥 𝑣𝑥
• --A node in 𝑎𝑐𝑐𝑥 𝐴𝑐𝑐𝑥
• --A list of nodes whose requests rejected by node 𝑅𝑒𝑗𝑥 𝑣𝑥
• --A node in 𝑟𝑒𝑗𝑥 𝑅𝑒𝑗𝑥
• --Number of requests sent by node 𝑡𝑟𝑖𝑎𝑙𝑥 𝑣𝑥
• --Current iteration of a simulation cycle𝑖𝑡𝑒𝑟
• --Current time tick in one iteration of a simulation cycle𝑡
• --Probability that , a customer of  , sends a request to candidate supplier 𝑝𝑚,𝑛 𝑣𝑚 𝑣𝑖 𝑣𝑛
• --A list of edges to be added to  𝐸𝑎 𝐺𝑠

CONSTANTS:
•   // The maximum iteration of one simulation cycle.𝑚𝑎𝑥𝐼𝑡𝑒𝑟 = 13
•  // The maximum number a node can send requests for alternative suppliers in 𝑚𝑎𝑥𝑇𝑟𝑖𝑎𝑙 = 10

one simulation cycle.
•  // Revenue level (firm size) of node : small, medium, and large𝑅𝑒𝑣𝑒𝑛𝑢𝑒𝑥 𝑣𝑥



MAIN PROGRAM

START simulation

FOR iter =  to 1 𝑚𝑎𝑥𝐼𝑡𝑒𝑟
    SET  // Empty the set of edges added in the previous iteration.𝐸𝑎 = ∅
    IF ==1 𝑖𝑡𝑒𝑟

INITIALIZE = , = 𝑉𝑑 ∅ 𝑉𝑟 ∅
FOR each 𝑣𝑥 ∈ 𝑉

INITIALIZE  based on simulation settings in Table 4.𝑈𝑥
INITIALIZE , ,  𝑅𝑒𝑞𝑥 𝐴𝑐𝑐𝑥 𝑅𝑒𝑗𝑥
SET 𝑡𝑟𝑖𝑎𝑙𝑥 = 0

        END FOR
ELSE

FOR each 𝑣𝑥 ∈ 𝑉
RESET , ,     𝑅𝑒𝑞𝑥 𝐴𝑐𝑐𝑥 𝑅𝑒𝑗𝑥

    END FOR
    END IF  
     
    FOR each   // Remove nodes𝑣𝑖 ∈ 𝑉𝑟
    OBTAIN  and  // Find customers and competitors for nodes to be removed𝐶𝑖 𝑃𝑖
             FOR each  and each 𝑣𝑚 ∈ 𝐶𝑖 𝑣𝑛 ∈ 𝑃𝑖
             OBTAIN  𝑝𝑚,𝑛

END FOR
; 𝐺𝑠 = 𝐺𝑠 ― 𝑣𝑖 𝐺𝑝 = 𝐺𝑝 ― 𝑣𝑖;

Remove ’s edges from  and 𝑣𝑖 𝐸𝑠 𝐸𝑝
END FOR
SET  // Empty the set of nodes to be removed𝑉𝑟 = ∅

    FOR  =  to 𝑡 1 𝑚𝑎𝑥𝑇𝑟𝑖𝑎𝑙
   // Send requests to alternative suppliers
    FOR each 𝑣𝑥 ∈ 𝑉
    IF  has no lost suppliers OR 𝑣𝑥 𝑡𝑟𝑖𝑎𝑙𝑥 == 𝑚𝑎𝑥𝑇𝑟𝑖𝑎𝑙

 CONTINUE
            END IF

// Send out requests for each of the lost suppliers of node 𝑣𝑥
FOR each 𝑙𝑠𝑥 ∈ 𝐿𝑆𝑥

    DRAW  according to 𝑞𝑥 𝑝𝑚,𝑛
    Send request to 𝑞𝑥

 // number of trials increase by 1𝑡𝑟𝑖𝑎𝑙𝑥 = 𝑡𝑟𝑖𝑎𝑙𝑥 +1 𝑣′𝑥𝑠 
END FOR

END FOR

        // Alternative suppliers handle requests
FOR each  𝑣𝑥 ∈ 𝑉

IF  OR   // This node has no extra capacity𝑈𝑥 < 1 𝑅𝑒𝑞𝑥 = ∅
CONTINUE    

            END IF



OBTAIN   // Decide which requests to accept and reject 𝐴𝑐𝑐𝑥,𝑅𝑒𝑗𝑥

FOR each  // Accept requests and add edges𝑎𝑐𝑐𝑥 ∈ 𝐴𝑐𝑐𝑥
IF edge  NOT in 𝑉𝑥→𝑎𝑐𝑐𝑥 𝐺𝑠

        APPEND  to (𝑉𝑥,𝑎𝑐𝑐𝑥) 𝐸𝑎
   END IF

                  // The extra capacity decrease by 1 𝑈𝑥 = 𝑈𝑥 ―1
END FOR

FOR each 𝑟𝑒𝑗𝑥 ∈ 𝑅𝑒𝑗𝑥
   REMOVE  from ’s candidate list𝑣𝑥 𝑟𝑒𝑗𝑥

END FOR
        END FOR
    END FOR

    FOR each  // Increase the capacity for suppliers for removed nodes𝑣𝑖 ∈ 𝑉𝑟
    FOR each 𝑠𝑖 ∈ 𝑆𝑖

𝑈𝑖 = 𝑈𝑖 +1
    END FOR 
    END FOR

ADD edges in  into 𝐸𝑎 𝐺𝑆

    FOR each   //Check which node is disrupted𝑣𝑥 ∈ 𝑉
    IF  cannot secure suppliers compared to what is has in 𝑣𝑥 𝑖𝑡𝑒𝑟 ― 1

          // Set this node as disrupted𝑉𝑑 = 𝑉𝑑 + 𝑣𝑥
END IF

    END FOR

    FOR each //Check which disrupted node(s) should be removed𝑣𝑥 ∈ 𝑉𝑑
    IF  is to be removed based on a normal/uniform distribution with mean in Eq.-1. 𝑣𝑥

          // Set this node as to be removed𝑉𝑟 = 𝑉𝑟 + 𝑣𝑥
𝑉𝑑 = 𝑉𝑑 ― 𝑣𝑥

END IF
    END FOR

END FOR
STOP simulation



Appendix 3: Examining assumptions of linear regressions

The validity of linear regression results depends on three assumptions. In this appendix, we test 
these assumptions for our regression model on factors impacting the effectiveness of proactive 
strategies.

1. Linearity

Linear regressions assume the existence of linear relationships between independent and dependent 
variables. We first apply Harvey Collier test (Harvey & Collier, 1977) for linearity validation. The 
p value is less than 0.001 – there is sufficient evidence that we reject the null hypothesis of linearity. 

To address such non-linearity issue, we apply logarithm transformations to all covariates except 
the three dummy codes for sectors. Applying the same test on the linear regression model with 
transformed data, the p value becomes 0.1 where we fail to reject the linearity assumption. In the 
following two sections, we test the model with log-transformed data against normality and 
homoscedasticity assumptions. Regression models we used in the main paper are also based on log-
transformed data. 

2. Normality

We apply quantile-quantile (Q-Q) plot to examine normality of the residual score. As Figure A.3.1 
shows, there is a strong linear relationship ( ) between sample and theoretical 𝑟2 = 0.89, 𝑝 < 0.001
(in this case, our reference distribution is normal distribution) quantiles. At the same time, the 
scatter points do not fall on a straight line, indicating some degree of non-normality in the residual.

Nonetheless, we argue that, first of all, normality is not a necessary assumption for linear regression 
models. Specifically, according to Lumley et al. (2002):

“… [Normality] is not necessary for the least-squares fitting of the regression model but it is 
required in general for inference making … only extreme departures of the distribution of Y 
from normality yield spurious results.

This is consistent with the fact that the Central Limit Theorem is more sensitive to extreme 
distributions in small samples, as most textbook analyses are of relatively small sets of data…”

Further, our sample size of 181 is large enough for the statistical inference to be effective. Past 
studies have shown that sample sizes of 40 (Barrett & Goldsmith, 1976) or 80 (Ratcliffe, 1968) are 
large enough to diminish the departure from normality for inference.



Figure A.3.1. Quantile – Quantile plot for residuals.

3. Homoscedasticity

Homoscedasticity requires that the variance of error terms (i.e. residuals) stay constant across 
different values of independent variables. We apply the Breusch-Pagan test (Breusch & Pagan, 
1979) and obtain a p-value less than 0.001, which indicates heteroscedasticity. To address this 
problem, we used robust standard errors [a.k.a, White standard errors; (Arellano, 1987)] in the 
model, which is a common way for dealing with heteroscedastic data in linear regression models.
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